Abstract
In the Vietnamese Mekong Delta (VMD), alternate wetting and drying (AWD) in rice (Oryza sativa L.) production during the dry season has the potential to reduce greenhouse gas emission and freshwater use. However, its effect on yield compared with continuously flooded systems can vary. To evaluate the effect of AWD on yield and yield-forming processes on genotypes commonly grown in the VMD, field trials over two consecutive dry seasons were conducted at the Loc Troi Group's agricultural research station in the VMD. We observed a significant yield reduction, 7% on average, across all varieties grown under AWD. Analysis of yield components showed that under AWD, genotypes on average produced more tillers, but fewer spikelets, suffered greater spikelet sterility and had a lower 1000 grain weight. The size of this effect differed between dry seasons. Accordingly, we were able to identify and characterize genotypes better suited to AWD. We also could relate shifts in sink-source relationships to the overlap of drying events and key phenological stages other than flowering. Our study shows how successful implementation of AWD requires adaptation to both environment and genotype.