Physiological, transcriptional and metabolomic evidence for arbuscular mycorrhizal fungi and Lactobacillus plantarum in peanut resistance to salinity stress

Abstract

Arbuscular mycorrhizal fungi (AMF) and Lactobacillus plantarum (LP) play pivotal roles in plant salinity resistance; however, difficulties are still exist in ascertaining their synergistic effects in counteracting legume soil salinity. Here, two peanut cultivars (salt-tolerant and salt-sensitive) were subjected to salinity stress, and the alleviation effects of combined microbial agent (CMA, inoculation with AMF + application with LP) on peanut salinity tolerance have been comprehensively characterized. CMA significantly enhanced the biomass production, leaf relative water content, increased the net photosynthetic rate, the maximal photochemical efficiency of photosystem II (PSII) and strengthened the antioxidant system, while dramatically decreased the reactive oxygen species (ROS) accumulation, lipid peroxidation and relative electrolyte conductivity under salinity conditions. Moreover, transcriptional and metabolomic evidence advocated that a subset of stress-responsive pathways involved in plant growth (e.g. sucrose and starch), photosystem, antioxidant response, signal transduction (e.g. phytohormone and MAPK), osmotic homeostasis (e.g. total soluble sugar and amino acids) and root metabolism (e.g. asparagine and phenylpropanoid) have been regulated by CMA. Taken together, the physiological, transcriptional and metabolomic results indicate that CMA could induce peanut salinity tolerance through increasing plant growth performance, maintaining photosynthetic apparatus integrity, enhancing antioxidant system and regulating root metabolism. This study provides a promising CMA product and would be important for deepening the knowledge of the mechanisms regarding bacterial–fungal interactions.

Status of yam (Dioscorea spp.) in the Democratic Republic of Congo

Abstract

Yam is an important tuber crop with enormous potential to enhance rural sustenance and livelihood in DRC. However, studies to enhance its genetic improvement are very far from sufficient with only a handful of information available on the crop. Yam has been treated as an orphan crop compared to contemporary crops such as cassava and sweet potato which have adapted to different cropping systems and become widespread in production. The lack of research attention to address the major production challenges has further decreased the value and potential of the crop compared to its contemporaries. These production constraints include lack of adequate quality planting materials, low yield potential, poor resistance/tolerance to yam mosaic and anthracnose diseases and ultimately poor tuber quality attributes focusing on tuber taste, flesh oxidation and dry matter contents of the majority of the farmers preferred varieties. In this review, we evaluated the status of yam in DRC and presented the needful activities to be incorporated for its improvement. Diversity has however been maintained mainly through ennoblement efforts in house gardens and small farmlands using traditional farming methods. Studies from other nations where yam has been successful with prominence in characterization and genetic improvement brought to light the need for DRC to consider yam as a staple carbohydrate food source, even to the extent of modifications in food public policy. Reversal of the yam's current stigma is a challenge to the scientific community and the population in general.

Characterisation of starch properties and physical characteristics in buckwheat (Fagopyrum esculentum Moench.) mutant lacking accumulation of ‘granule‐bound starch synthase a’

Abstract

The concentration of amylose, which is synthesised using granule-bound starch synthase, affects the physical properties of food. However, no studies have focused on starch properties and physical characteristics of low-amylose buckwheat. Here, we hypothesised that low-amylose buckwheat would be useful to produce new buckwheat products because low-amylose characteristics change the texture of buckwheat food. In this study, we bred relatively low-amylose buckwheat compared to wild type and investigated the causative genes of the traits, starch properties and physical properties of noodles. In the GBSSa mutant, the amylose concentration was lower than that in the wild type. Compared with the wild type, the mutant exhibited the following traits: Amylose concentration decreased by approximately 2%, setback in the Rapid Visco Analyzer decreased by 30 points and the physical characteristics of noodles in the sensory analysis were soft and sticky. These results suggest that this trait may be useful for changing the texture of foods. In addition, the mutant is promising for producing new foods with physical characteristics that are different from those of the wild type.

Genetic dissection of endosperm hydration in malting barley (Hordeum vulgare)

Abstract

Hydration of the endosperm is a critical part of the malting process that ensures proper modification of the grain. However, little is known about the genetic controls of endosperm hydration and its relationship to agronomic and malt quality traits. The extent of endosperm hydration is estimated through hydration index (HYI). We measured HYI, agronomic, and malt quality traits on a 169-line subset of the NSGC Barley Core Panel, which includes global malt lines, some dating from the inception of European breeding programmes. Utilizing GWAS, 61 QTLs were identified for HYI, dormancy, agronomic, and malt quality traits. Of these, six were found to be related to HYI and were located on 1H, 2H, 3H, 6H, and 7H. We found HYI QTLs cosegregating with kernel size and hardness (1H and 3H), malting quality (2H and 6H), and dormancy (2H and 6H). These results indicate that endosperm hydration after steeping can be improved by selecting high HYI alleles on 2H, 6H, and 7H, positively impacting malting quality without negatively impacting kernel size or dormancy.

A new approach to Fourier transform Raman: Identification of haploids in maize (Zea mays)

Abstract

The objective of this work was to adapt the FT Raman spectroscopy analysis in the differentiation of haploid and diploid kernels in maize, developing a new efficient, agile, precise, and nondestructive methodology. The main difference observed in FT Raman readings was a peak in the region between 1600 and 1700 cm−1 in possibly haploid kernels. It was possible to correlate the characteristics of the kernels with the presence of the R1-nj gene and the readings obtained in the Raman spectrometry technique. Most of the kernels previously classified as haploid showed positive values for principal component analysis (PCAs), indicating a correlation in the identification of haploids by the techniques adopted. The identification of haploids by R-Navajo was superior to FT Raman. However, FT Raman spectroscopy is an agile analysis technique that enables the development of non-invasive and non-destructive analytical methods in maize kernels, in addition to providing relevant information about the chemical structures present in the composition of the samples.

Responses of differentially expressed proteins and endogenous hormones in winter rapeseed (Brassica rapa L.) roots under water deficit stress

Abstract

Winter rapeseed (Brassica rapa L.) can well-adapt to environmental conditions such as barrenness, water deficit and low temperature in arid and semi-arid planting regions and is the preferred rapeseed type. In this study, we analysed changes of root system morphology, antioxidant enzyme activity, endogenous hormone contents and differentially expressed proteins (DEPs) under control (CK), slight water deficit (SWD, 50–55% of maximum field water capacity), moderate water deficit (MWD, 40–45% of maximum field water capacity) and high water deficit (HWD, 30–35% of maximum field water capacity) conditions. Winter rapeseed experienced taproot elongation, decreased taproot diameter and increased lateral root number, under water deficit stress. The accumulation of reactive oxygen species (ROS) can cause membrane system peroxidation, and antioxidant enzyme activity increases to remove ROS. Changes in jasmonic acid (JA), salicylic acid (SA), cytokinin (CTK), auxin (IAA) and gibberellin (GA) levels promote the absorption of water and minerals by driving changes in the root system architecture to resist water deficit stress. A proteomic analysis has shown that DEPs are involved in energy metabolism, antioxidation response, osmotic regulation, hormone signal transduction, protein metabolism and the stress response, and these proteins are located in the peroxisome, chloroplast, mitochondrion, cell wall, vacuole, cytoplasm, extracellular space and cell membrane. In this study, multiple DEPs (malate dehydrogenase cytoplasmic 1 OS, 14-3-3-like protein GF14 Psi, GA 3-beta-dioxygenase, glutathione reductase and jasmonate-inducible protein) were involved in the root system architecture, revealing the complexity of the root response to water deficit. Significant/extremely significant synergistic relationships were observed between antioxidant enzyme activity and endogenous hormone contents. In conclusion, ROS, endogenous hormones and stress-related proteins work synergistically to control the root system architecture of winter rapeseed roots in response to water deficit stress.