Category Archives: Annual Review of Plant Biology
BAHD Company: The Ever-Expanding Roles of the BAHD Acyltransferase Gene Family in Plants
Phyllosphere Microbiome
Decoding the Auxin Matrix: Auxin Biology Through the Eye of the Computer
Chloroplast Proteostasis: Import, Sorting, Ubiquitination, and Proteolysis
Epigenetic Regulation During Plant Development and the Capacity for Epigenetic Memory
Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems
cis-Regulatory Elements in Plant Development, Adaptation, and Evolution
The Diversity and Functions of Plant RNA Modifications: What We Know and Where We Go from Here
Since the discovery of the first ribonucleic acid (RNA) modifications in transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), scientists have been on a quest to decipher the identities and functions of RNA modifications in biological systems. The last decade has seen monumental growth in the number of studies that have characterized and assessed the functionalities of RNA modifications in the field of plant biology. Owing to these studies, we now categorize RNA modifications based on their chemical nature and the RNA on which they are found, as well as the array of proteins that are involved in the processes that add, read, and remove them from an RNA molecule. Beyond their identity, another key piece of the puzzle is the functional significance of the various types of RNA modifications. Here, we shed light on recent studies that help establish our current understanding of the diversity of RNA modifications found in plant transcriptomes and the functions they play at both the molecular (e.g., RNA stability, translation, and transport) and organismal (e.g., stress response and development) levels. Finally, we consider the key research questions related to plant gene expression and biology in general and highlight developments in various technologies that are driving our insights forward in this research area.
An RNA World
My research career started with an ambition to work out how genes are regulated in plants. I tried out various experimental systems—artichoke tissue culture in Edinburgh; soybean root nodules in Montreal; soybean hypocotyls in Athens, Georgia; and cereal aleurones in Cambridge—but eventually I discovered plant viruses. Viral satellite RNAs were my first interest, but I then explored transgenic and natural disease resistance and was led by curiosity into topics beyond virology, including RNA silencing, epigenetics, and more recently, genome evolution. On the way, I have learned about approaches to research, finding tractable systems, and taking academic research into the real world. I have always tried to consider the broader significance of our work, and my current projects address the definition of epigenetics, the arms race concept of disease resistance, and Darwin's abominable mystery.