Quadrat soil pollen signal reflects plant important values in forests and shrublands from subtropical China

Pollen analysis, a crucial tool in botany and ecology for examining historical biotic dynamics, has elicited debate owing to its complex link with vegetation. The challenge lies in discerning the ecological significance of pollen data. In this study, we conducted detailed quadrat surveys on Jinhua Mountain, subtropical China, analyzing topsoil pollen to determine whether pollen signals accurately reflect key ecological components in the forests and shrublands. We performed direct comparisons between pollen and plant compositions and calculated pollen percentages and plant Important Values (IVs) for each quadrat. The results indicate greater homogeneity in pollen composition across the study area compared to plant composition, particularly in the high percentage of Pinus pollen. However, distinct plant communities exhibited significantly different pollen compositions, as evidenced by the multi-response permutation test. This divergence aligns with variations in the dominant plant species across different communities. There were significant correlations between pollen percentages and plant IVs, with correlation coefficients of 0.55 (p < 0.001) at the quadrat level and 0.78 (p < 0.001) at the taxon level. These results support the utility of pollen analysis for representing ecologically significant values in subtropical Chinese forests and shrublands. Such correlations might also be extrapolated to pollen-based paleoecological studies.

Effect of a novel dwarfing mutant site on chromosome 4B on agronomic traits in common wheat

The introduction of dwarfing genes triggered a wave of “green revolution”. A number of wheats dwarfing genes have been reported in previous studies, and only a small fraction of these have been applied to production practices. Therefore, the development of novel dwarfing genes for wheat is of great value. In this study, a novel dwarfing site, Rht-yz, identified in the Yanzhan mutation, is located on chromosome 4B (30-33MB) and its mechanism of action is different from that of Rht-B1b (C-T mutation), but whether it affects the Rht-B1a (TraesCS4B02G043100) or other genes is unclear. Exogenously applied GA3 experiments showed that Rht-yz is one of the gibberellin-insensitive dwarf genes. The effects of the dwarf gene Rht-yz on agronomic traits in wheat were evaluated in the field using Yanzhan, Yanzhan mutations, F2:3 and F3:4 lines. The results showed that Rht-yz improved lodging resistance by reducing plant height, increasing diameter, wall thickness and mechanical strength of the basal stem. In terms of yield traits, Rht-yz had negative effects on tiller number plant-1, biomass plant-1 and yield plant-1, but had no significant effect on harvest index, 1000-kernel weight and spike traits. In addition, Rht-yz significantly increased crude protein, wet gluten and starch content. Therefore, the rational use of the new dwarfing site Rht-yz has potential and value in dwarf wheat breeding.

Enhancing the quality of fermented plant leaves: the role of metabolite signatures and associated fungi

Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal–metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.

Unlocking the genetic diversity and population structure of the newly introduced two-row spring European HerItage Barley collecTion (ExHIBiT)

In the last century, breeding programs have traditionally favoured yield-related traits, grown under high-input conditions, resulting in a loss of genetic diversity and an increased susceptibility to stresses in crops. Thus, exploiting understudied genetic resources, that potentially harbour tolerance genes, is vital for sustainable agriculture. Northern European barley germplasm has been relatively understudied despite its key role within the malting industry. The European Heritage Barley collection (ExHIBiT) was assembled to explore the genetic diversity in European barley focusing on Northern European accessions and further address environmental pressures. ExHIBiT consists of 363 spring-barley accessions, focusing on two-row type. The collection consists of landraces (~14%), old cultivars (~18%), elite cultivars (~67%) and accessions with unknown breeding history (~1%), with 70% of the collection from Northern Europe. The population structure of the ExHIBiT collection was subdivided into three main clusters primarily based on the accession’s year of release using 26,585 informative SNPs based on 50k iSelect single nucleotide polymorphism (SNP) array data. Power analysis established a representative core collection of 230 genotypically and phenotypically diverse accessions. The effectiveness of this core collection for conducting statistical and association analysis was explored by undertaking genome-wide association studies (GWAS) using 24,876 SNPs for nine phenotypic traits, four of which were associated with SNPs. Genomic regions overlapping with previously characterised flowering genes (HvZTLb) were identified, demonstrating the utility of the ExHIBiT core collection for locating genetic regions that determine important traits. Overall, the ExHIBiT core collection represents the high level of untapped diversity within Northern European barley, providing a powerful resource for researchers and breeders to address future climate scenarios.

A new model construction based on the knowledge graph for mining elite polyphenotype genes in crops

Identifying polyphenotype genes that simultaneously regulate important agronomic traits (e.g., plant height, yield, and disease resistance) is critical for developing novel high-quality crop varieties. Predicting the associations between genes and traits requires the organization and analysis of multi-dimensional scientific data. The existing methods for establishing the relationships between genomic data and phenotypic data can only elucidate the associations between genes and individual traits. However, there are relatively few methods for detecting elite polyphenotype genes. In this study, a knowledge graph for traits regulating-genes was constructed by collecting data from the PubMed database and eight other databases related to the staple food crops rice, maize, and wheat as well as the model plant Arabidopsis thaliana. On the basis of the knowledge graph, a model for predicting traits regulating-genes was constructed by combining the data attributes of the gene nodes and the topological relationship attributes of the gene nodes. Additionally, a scoring method for predicting the genes regulating specific traits was developed to screen for elite polyphenotype genes. A total of 125,591 nodes and 547,224 semantic relationships were included in the knowledge graph. The accuracy of the knowledge graph-based model for predicting traits regulating-genes was 0.89, the precision rate was 0.91, the recall rate was 0.96, and the F1 value was 0.94. Moreover, 4,447 polyphenotype genes for 31 trait combinations were identified, among which the rice polyphenotype gene IPA1 and the A. thaliana polyphenotype gene CUC2 were verified via a literature search. Furthermore, the wheat gene TraesCS5A02G275900 was revealed as a potential polyphenotype gene that will need to be further characterized. Meanwhile, the result of venn diagram analysis between the polyphenotype gene datasets (consists of genes that are predicted by our model) and the transcriptome gene datasets (consists of genes that were differential expression in response to disease, drought or salt) showed approximately 70% and 54% polyphenotype genes were identified in the transcriptome datasets of Arabidopsis and rice, respectively. The application of the model driven by knowledge graph for predicting traits regulating-genes represents a novel method for detecting elite polyphenotype genes.

The reduced growth due to elevated CO2 concentration hinders the sexual reproduction of mature Northern pipevine (Aristolochia contorta Bunge)

The phenology has gained considerably more attention in recent times of climate change. The transition from vegetative to reproductive phases is a critical process in the life history of plants, closely tied to phenology. In an era of climate change, understanding how environmental factors affect this transition is of paramount importance. This study consisted of field surveys and a greenhouse experiment on the reproductive biology of Northern pipevine (Aristolochia contorta Bunge). During field surveys, we investigated the environmental factors and growth characteristics of mature A. contorta, with a focus on both its vegetative and reproductive phases. In its successful flowering during the reproductive phase, A. contorta grew under the conditions of 40% relative light intensity and 24% soil moisture content, and had a vertical rhizome. In the greenhouse experiments, we examined the impact of increased CO2 concentration on the growth and development of 10-year-old A. contorta, considering the effect of rhizome direction. Planted with a vertical rhizome direction, A. contorta exhibited sufficient growth for flowering under ambient CO2 concentrations. In contrast, when planted with a horizontal rhizome direction, it was noted to significantly impede successful growth and flowering under elevated CO2 concentrations. This hindered the process of flowering, highlighting the pivotal role of substantial vegetative growth in achieving successful flowering. Furthermore, we observed a higher number of underground buds and shoots under the conditions of elevated CO2 concentration and a horizontal rhizome direction instead of flowering. Elevated CO2 concentrations also exhibited diverse effects on mature A. contorta’s flower traits, resulting in smaller flower size, shorter longevity, and reduced stigma receptivity, and pollen viability. The study shed light on elevated CO2 concentrations can hinder growth, potentially obstructing sexual reproduction and diminishing genetic diversity.

Optimization of irrigation and fertilization of apples under magnetoelectric water irrigation in extremely arid areas

Apple (Malus pumila Mill.) is one of the important economic crops in the arid areas of Xinjiang, China. For a long time, there has been a problem of high consumption but low yield in water and fertilizer management, prevent improvements in apple quality and yield. In this study, 5-year-old ‘Royal Gala’ apple trees in extremely arid areas of Xinjiang were used as experimental materials to carry out field experiments. considering 5 irrigation levels (W1, 30 mm; W2, 425 mm; W3, 550 mm; W4, 675 mm; W5, 800 mm) and 5 fertilization levels (F1, 280 kg·ha-1; F2, 360 kg·ha-1; F3, 440 kg·ha-1; F4, 520 kg·ha-1; F5, 600 kg·ha-1) under magnetoelectric water irrigation conditions. The results demonstrated that magnetoelectric water combined with the application of 675 mm irrigation amount and 520 kg·ha-1 fertilization amount was the most effective combination. These results occurred by increasing net photosynthetic rate of apple leaves, improved the quality of apples, increased apple yield, and promoted the improvement of water and fertilizer use efficiency. Additionally, the quadratic regression model was used to fit the response process of yield, IWUE and PFP to irrigation amount and fertilization amount, and the accuracy was greater than 0.8, indicating good fitting effects. The synergistic effect of water and fertilizer has a positive effect on optimizing apple water and fertilizer management. Principal component analysis showed that the magnetoelectric treatment combined water and fertilizer mainly affected apple yield, water and fertilizer use efficiency and vitamin C content related to quality. This study provides valuable guidance for improving water and fertilizer productivity, crop yield and quality in extreme arid areas of Xinjiang by using Magnetoelectric water irrigation.

How much heat does non-photochemical quenching produce?

Non-photochemical quenching (NPQ) is a protective mechanism used by plants to safely dissipate excess absorbed light energy as heat, minimizing photo-oxidative damage. Although the importance of NPQ as a safety valve for photosynthesis is well-known, the physiological and environmental effects of the heat produced remain unclear because the amount of heat produced by NPQ is considered negligible, and its physiological effects have not been directly observed. Here, we calculated the heat produced by NPQ and evaluated its impact on the leaf and global warming based on simplified models. Our evaluation showed that the heat produced by NPQ in a given leaf area is 63.9 W m−2 under direct sunlight. Under the standard condition, NPQ warms up the leaf at less than 0.1°C, but it could be 1°C under particular conditions with low thermal conductance. We also estimated the thermal radiation of vegetation’s NPQ to be 2.2 W m−2 par global averaged surface area. It is only 0.55% of the thermal radiation by the Earth’s surface, but still significant in the current climate change response. We further discuss the possible function of NPQ to plant physiology besides the safety valve and provide strategies with artificial modification of the NPQ mechanism to increase food production and mitigate global warming.

Significant correlation between leaf vein length per unit area and stomatal density: evidence from Red Tip and Chinese photinias

The vascular veins in photosynthetic leaves play an important role in transporting water and sugars throughout the plant body, and their venation pattern and vein density determine the hydraulic efficiency of the leaf. Likewise, stomatal density (SD) can influence photosynthetic gas exchange. However, the correlation between leaf vein density and SD is seldom reported. Herein, we examined 16 leaves from the hybrid Photinia × fraseri and 16 leaves from one of its parents, P. serratifolia, to explore the correlation between leaf vein density and SD. For each leaf, equidistant lamina quadrats were excised along two longitudinal transects (one along the midrib and another along the leaf margin). For each quadrat, micrographs of 1.2 mm × 0.9 mm stomatal imprints, and 2.51 mm × 1.88 mm micrographs of leaf veins were used to measure total vein area per leaf unit area (VAA) and total vein length per unit area (VLA), as indicators of leaf vein density, to determine the correlation between SD and leaf vein density. For each taxon, there was no significant correlation between SD and VAA, but there was a significant correlation between SD and VLA. The data indicate that SD is not positively correlated with VAA but positively correlated with VLA for both the hybrid and the parent species. This study indicates that future work should focus on the relationships between SD and total vein length per unit area rather than on total leaf vein area per unit area within and across species.

The modified activity of prolyl 4 hydroxylases reveals the effect of arabinogalactan proteins on changes in the cell wall during the tomato ripening process

Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120–60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.