Rain splash-mediated dispersal of Escherichia coli from fecal deposits to field-grown lettuce in the mid- and south Atlantic U.S. regions is affected by mulch type

Introduction

Wildlife feces can contaminate vegetables when enteric bacteria are released by rain and splashed onto crops. Regulations require growers to identify and not harvest produce that is likely contaminated, but U.S. federal standards do not define dimensions for no-harvest zones. Moreover, mulching, used to retain soil moisture and maximize crop yield may impact rain-mediated bacterial dispersal from feces.

Methods

To assess Escherichia coli dissemination from a fecal point source to lettuce grown on various mulches, lettuce cv. ‘Magenta’ was transplanted into raised beds with plastic, biodegradable plastic, straw, or left uncovered at field sites in Maryland and Georgia. Eleven days post-transplant, 10 g of rabbit manure spiked with ~8 log CFU g-1E. coli were deposited in each bed. One day following natural or simulated rain events, lettuce was sampled along 1.5 m transects on either side of fecal deposits. Lettuce-associated E. coli was semi-quantified with an MPN assay and dependence on fecal age (stale or fresh), lettuce age (baby leaf or mature head), distance from point source, mulch and post-rain days were statistically evaluated.

Results

Distance (p<0.001), fecal age (p<0.001) and mulch (p<0.01) were factors for E. coli transfer from point source to lettuce. The highest and lowest E. coli estimates were measured from lettuce grown on biodegradable plastic and straw, respectively, with a 2-log MPN difference (p<0.001). Mulch and distance were also significant factors in E. coli recovery 3 days post-rain (both p<0.001), where plastic mulches differed from bare ground and straw (p<0.01). For all treatments, fewer E. coli were retrieved from lettuce at 0.3 m, 3 days post-rain compared to 1 day (p<0.001). Fitting the data to a Weibull Model predicated that a 7-log reduction in E. coli from fecal levels would be achieved at 1.2-1.4 m from the point source on plastic mulches, 0.75 m on bare soil (p<0.05) and 0.43 m on straw (p<0.01).

Discussion

Straw and bare ground limited rain-mediated E. coli dispersal from feces to lettuce compared to plastic mulches. Fecal age was negatively associated with E. coli dispersal. These findings can inform harvesting recommendations for measures related to animal intrusion in vegetable production areas.

Whole-transcriptome profiling and identification of cold tolerance-related ceRNA networks in japonica rice varieties

Introduction

Low-temperature stress negatively impacts rice yield, posing a significant risk to food security. While previous studies have explored the physiological and linear gene expression alterations in rice under low-temperature conditions, the changes in competing endogenous RNA (ceRNA) networks remain largely unexamined.

Methods

We conducted RNA sequencing on two japonica rice varieties with differing cold-tolerance capabilities to establish ceRNA networks. This enabled us to investigate the transcriptional regulatory network and molecular mechanisms that rice employs in response to low-temperature stress.

Results

We identified 364 differentially expressed circular RNAs (circRNAs), 224 differentially expressed microRNAs (miRNAs), and 12,183 differentially expressed messenger RNAs (mRNAs). WRKY family was the most prominent transcription factor family involved in cold tolerance. Based on the expression patterns and targeted relationships of these differentially expressed RNAs, we discerned five potential ceRNA networks related to low-temperature stress in rice: osa-miR166j-5p from the miR166 family was associated with cold tolerance; osa-miR528-3p and osa-miR156j-3p were linked to stress response; and osa-miR156j-3p was involved in the antioxidant system. In addition, Os03g0152000 in the antioxidant system, as well as Os12g0491800 and Os05g0381400, correlated with the corresponding stress response and circRNAs in the network. A gene sequence difference analysis and phenotypic validation of Os11g0685700 (OsWRKY61) within the WRKY family suggested its potential role in regulating cold tolerance in rice.

Discussion and conclusion

We identified Os11g0685700 (OsWRKY61) as a promising candidate gene for enhancing cold tolerance in japonica rice. The candidate miRNAs, mRNAs, and circRNAs uncovered in this study are valuable targets for researchers and breeders. Our findings will facilitate the development of cold-tolerant rice varieties from multiple angles and provide critical directions for future research into the functions of cold-tolerance-related miRNAs, mRNAs, and circRNAs in rice.

Identification of plant microRNAs using convolutional neural network

MicroRNAs (miRNAs) are of significance in tuning and buffering gene expression. Despite abundant analysis tools that have been developed in the last two decades, plant miRNA identification from next-generation sequencing (NGS) data remains challenging. Here, we show that we can train a convolutional neural network to accurately identify plant miRNAs from NGS data. Based on our methods, we also present a user-friendly pure Java-based software package called Small RNA-related Intelligent and Convenient Analysis Tools (SRICATs). SRICATs encompasses all the necessary steps for plant miRNA analysis. Our results indicate that SRICATs outperforms currently popular software tools on the test data from five plant species. For non-commercial users, SRICATs is freely available at https://sourceforge.net/projects/sricats.

Post-anthesis dry matter and nitrogen accumulation, partitioning, and translocation in maize under different nitrate–ammonium ratios in Northwestern China

Introduction

An appropriate supply of ammonium (NH4+) in addition to nitrate (NO3−) can greatly improve plant growth and promote maize productivity. However, knowledge gaps exist regarding the mechanisms by which different nitrogen (N) fertilizer sources affect the enzymatic activity of nitrogen metabolism and non-structural carbohydrates during the post-anthesis period.

Methods

A field experiment across 3-year was carried out to explore the effects of four nitrateammonium ratio (NO3−/NH4+ = 1:0 (N1), 1:1 (N2), 1:3 (N3), and 3:1 (N4)) on postanthesis dry matter (DM) and N accumulation, partitioning, transportation, and grain yield in maize.

Results

NO3-/NH4+ ratio with 3:1 improved the enzymatic activity of N metabolism and non-structural carbohydrate accumulation, which strongly promoted the transfer of DM and N in vegetative organs to reproductive organs and improved the pre-anthesis DM and nitrogen translocation efficiency. The enzymatic activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamine oxoglutarate aminotransferase, and non-structural carbohydrate accumulation under N4 treatment were increased by 9.30%–32.82%, 13.19%–37.94%, 4.11%–16.00%, 11.19%–30.82%, and 14.89%–31.71% compared with the other treatments. Mixed NO3−-N and NH4+-N increased the total DM accumulation at the anthesis and maturity stages, simultaneously decreasing the DM partitioning of stem, increasing total DM, DM translocation efficiency (DMtE), and contribution of pre-anthesis assimilates to the grain (CAPG) in 2015 and 2017, promoting the transfer of DM from stem to grain. Furthermore, the grain yield increased by 3.31%–9.94% (2015), 68.6%–26.30% (2016), and 8.292%–36.08% (2017) under the N4 treatment compared to the N1, N2, and N3 treatments.

Conclusion

The study showed that a NO3−/NH4+ ratio of 3:1 is recommended for high-yield and sustainable maize management strategies in Northwestern China.

Dissection of quantitative trait nucleotides and candidate genes associated with agronomic and yield-related traits under drought stress in rapeseed varieties: integration of genome-wide association study and transcriptomic analysis

Introduction

An important strategy to combat yield loss challenge is the development of varieties with increased tolerance to drought to maintain production. Improvement of crop yield under drought stress is critical to global food security.

Methods

In this study, we performed multiomics analysis in a collection of 119 diverse rapeseed (Brassica napus L.) varieties to dissect the genetic control of agronomic traits in two watering regimes [well-watered (WW) and drought stress (DS)] for 3 years. In the DS treatment, irrigation continued till the 50% pod development stage, whereas in the WW condition, it was performed throughout the whole growing season.

Results

The results of the genome-wide association study (GWAS) using 52,157 single-nucleotide polymorphisms (SNPs) revealed 1,281 SNPs associated with traits. Six stable SNPs showed sequence variation for flowering time between the two irrigation conditions across years. Three novel SNPs on chromosome C04 for plant weight were located within drought tolerance-related gene ABCG16, and their pleiotropically effects on seed weight per plant and seed yield were characterized. We identified the C02 peak as a novel signal for flowering time, harboring 52.77% of the associated SNPs. The 288-kbps LD decay distance analysis revealed 2,232 candidate genes (CGs) associated with traits. The CGs BIG1-D, CAND1, DRG3, PUP10, and PUP21 were involved in phytohormone signaling and pollen development with significant effects on seed number, seed weight, and grain yield in drought conditions. By integrating GWAS and RNA-seq, 215 promising CGs were associated with developmental process, reproductive processes, cell wall organization, and response to stress. GWAS and differentially expressed genes (DEGs) of leaf and seed in the yield contrasting accessions identified BIG1-D, CAND1, and DRG3 genes for yield variation.

Discussion

The results of our study provide insights into the genetic control of drought tolerance and the improvement of marker-assisted selection (MAS) for breeding high-yield and drought-tolerant varieties.

Warming affects leaf light use efficiency and functional traits in alpine plants: evidence from a 4-year in-situ field experiment

Introduction

Light use efficiency (LUE) is a crucial determinant of plant productivity, while leaf functional traits directly affect ecosystem functions. However, it remains unclear how climate warming affects LUE and leaf functional traits of dominant species in alpine meadows.

Methods

We conducted a 4-year in-situ field warming experiment to investigate the eco-physiological characteristics for a dominant species (Elymus nutans) and a common species (Potentilla anserina) on the Tibetan Plateau. The leaf traits, photosynthesis and fluorescence characteristics were measured, along with the soil physical-chemical properties associated with the two species.

Results and discussions

Experimental warming increased the leaf LUE, maximum photochemical efficiency, non-photochemical quenching, relative water content and specific leaf area for both species. However, there was a decrease in leaf and soil element content. Different species exhibit varying adaptability to warming. Increasing temperature significantly increased the photosynthetic rate, stomatal conductance, transpiration rate, total water content, and specific leaf volume of E. nutans; however, all these traits exhibited an opposite trend in P. anserina. Warming has a direct negative impact on leaf LUE and an indirectly enhances LUE through its effects on leaf traits. The impact of warming on plant photosynthetic capacity is primarily mediated by soil nutrients and leaf traits. These results indicate that the two different species employ distinct adaptive strategies in response to climate change, which are related to their species-specific variations. Such changes can confer an adaptive advantage for plant to cope with environmental change and potentially lead to alterations to ecosystem structure and functioning.

A comprehensive evaluation of the potential of three next-generation short-read-based plant pan-genome construction strategies for the identification of novel non-reference sequence

Pan-genome studies are important for understanding plant evolution and guiding the breeding of crops by containing all genomic diversity of a certain species. Three short-read-based strategies for plant pan-genome construction include iterative individual, iteration pooling, and map-to-pan. Their performance is very different under various conditions, while comprehensive evaluations have yet to be conducted nowadays. Here, we evaluate the performance of these three pan-genome construction strategies for plants under different sequencing depths and sample sizes. Also, we indicate the influence of length and repeat content percentage of novel sequences on three pan-genome construction strategies. Besides, we compare the computational resource consumption among the three strategies. Our findings indicate that map-to-pan has the greatest recall but the lowest precision. In contrast, both two iterative strategies have superior precision but lower recall. Factors of sample numbers, novel sequence length, and the percentage of novel sequences’ repeat content adversely affect the performance of all three strategies. Increased sequencing depth improves map-to-pan’s performance, while not affecting the other two iterative strategies. For computational resource consumption, map-to-pan demands considerably more than the other two iterative strategies. Overall, the iterative strategy, especially the iterative pooling strategy, is optimal when the sequencing depth is less than 20X. Map-to-pan is preferable when the sequencing depth exceeds 20X despite its higher computational resource consumption.

Effects of grazing exclusion on soil microbial diversity and its functionality in grasslands: a meta-analysis

Grazing exclusion (GE) is considered an effective strategy for restoring the degradation of overgrazed grasslands on the global scale. Soil microbial diversity plays a crucial role in supporting multiple ecosystem functions (multifunctionality) in grassland ecosystems. However, the impact of grazing exclusion on soil microbial diversity remains uncertain. Here, we conducted a meta-analysis using a dataset comprising 246 paired observations from 46 peer-reviewed papers to estimate how GE affects microbial diversity and how these effects vary with climatic regions, grassland types, and GE duration ranging from 1 to 64 years. Meanwhile, we explored the relationship between microbial diversity and its functionality under grazing exclusion. Overall, grazing exclusion significantly increased microbial Shannon (1.9%) and microbial richness (4.9%) compared to grazing group. For microbial groups, GE significantly increased fungal richness (8.6%) and bacterial richness (5.3%), but decreased specific microbial richness (-11.9%). The responses of microbial Shannon to GE varied among climatic regions, grassland types, and GE duration. Specifically, GE increased microbial diversity in in arid, semi-arid, and dry sub-humid regions, but decreased it in humid regions. Moreover, GE significantly increased microbial Shannon in semidesert grasslands (5.9%) and alpine grasslands (3.0%), but not in temperate grasslands. Long-term (>20 year) GE had greater effects on microbial diversity (8.0% for Shannon and 6.7% for richness) compared to short-term (<10 year) GE (-0.8% and 2.4%). Furthermore, grazing exclusion significantly increased multifunctionality, and both microbial and plant Shannon positively correlated with multifunctionality. Overall, our findings emphasize the importance of considering climate, GE duration, and grassland type for biodiversity conservation and sustainable grassland ecosystem functions.

Calcium signaling facilitates chilling- and GA- induced dormancy release in tree peony

Calcium plays a crucial role in plant growth and development, yet little is known about its function in endodormancy regulation. Tree peony (Paeonia suffruticosa), characterized by compound buds and large flowers, is well-known for its ornamental and medicinal value. To break bud dormancy release is a prerequisite of flowering and forcing culture, particularly during the Spring Festival. In this study, the Ca2+ chelator EGTA and Ca2+ channel blocker LaCl3 were applied, resulting in a significant delay in budburst during both chilling- and gibberellin (GA)- induced dormancy release in a dosage-dependent manner. As expected, the retardation of bud break was recovered by the supplementation of 30 mM CaCl2, indicating a facilitating role of calcium in dormancy release. Accordingly, several calcium-sensor-encoding genes including Calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs) were significantly up-regulated by prolonged chilling and exogenous GAs. Ultrastructure observations revealed a decline in starch grains and the reopening of transport corridors following prolonged chilling. Calcium deposits were abundant in the cell walls and intercellular spaces at the early dormant stage but were enriched in the cytosol and nucleus before dormancy release. Additionally, several genes associated with dormancy release, including EBB1, EBB3, SVP, GA20ox, RGL1, BG6, and BG9, were differentially expressed after calcium blocking and recovery treatments, indicating that calcium might partially modulate dormancy release through GA and ABA pathways. Our findings provide novel insights into the mechanism of dormancy release and offer potential benefits for improving and perfecting forcing culture technology in tree peonies.