Biodiversity plays important roles in ecosystem functions and genetic diversity is a key component of biodiversity. While effects of genetic diversity on ecosystem functions have been extensively documented, no study has tested how genetic diversity of plants influences greenhouse gas fluxes from plant-soil systems. We assembled experimental populations consisting of 1, 4 or 8 genotypes of the clonal plant
Category Archives: Frontiers in Plant Scienc
MethSemble-6mA: an ensemble-based 6mA prediction server and its application on promoter region of LBD gene family in Poaceae
The Lateral Organ Boundaries Domain (LBD) containing genes are a set of plant-specific transcription factors and are crucial for controlling both organ development and defense mechanisms as well as anthocyanin synthesis and nitrogen metabolism. It is imperative to understand how methylation regulates gene expression, through predicting methylation sites of their promoters particularly in major crop species. In this study, we developed a user-friendly prediction server for accurate prediction of 6mA sites by incorporating a robust feature set, viz., Binary Encoding of Mono-nucleotide DNA. Our model,MethSemble-6mA, outperformed other state-of-the-art tools in terms of accuracy (93.12%). Furthermore, we investigated the pattern of probable 6mA sites at the upstream promoter regions of the LBD-containing genes in
Analysis of gaps in rapeseed (Brassica napus L.) collections in European genebanks
Rapeseed is one of the most important agricultural crops and is used in many ways. Due to the advancing climate crisis, the yield potential of rapeseed is increasingly impaired. In addition to changing environmental conditions, the expansion of cultivated areas also favours the infestation of rapeseed with various pests and pathogens. This results in the need for continuous further development of rapeseed varieties. To this end, the potential of the rapeseed gene pool should be exploited, as the various species included in it contain promising resistance alleles against pests and pathogens. In general, the biodiversity of crops and their wild relatives is increasingly endangered. In order to conserve them and to provide impulses for breeding activities as well, strategies for the conservation of plant genetic resources are necessary. In this study, we investigated to what extent the different species of the rapeseed gene pool are conserved in European genebanks and what gaps exist. In addition, a niche modelling approach was used to investigate how the natural distribution ranges of these species are expected to change by the end of the century, assuming different climate change scenarios. It was found that most species of the rapeseed gene pool are significantly underrepresented in European genebanks, especially regarding representation of the natural distribution areas. The situation is exacerbated by the fact that the natural distributions are expected to change, in some cases significantly, as a result of ongoing climate change. It is therefore necessary to further develop strategies to prevent the loss of wild relatives of rapeseed. Based on the results of the study, as a first step we have proposed a priority list of species that should be targeted for collecting in order to conserve the biodiversity of the rapeseed gene pool in the long term.
Editorial: Salinity and drought stress in plants: understanding physiological, biochemical and molecular responses
Editorial: Integrated nutrients management: an approach for sustainable crop production and food security in changing climates
GMOs or non-GMOs? The CRISPR Conundrum
CRISPR-Cas9, the “genetic scissors”, is being presaged as a revolutionary technology, having tremendous potential to create designer crops by introducing precise and targeted modifications in the genome to achieve global food security in the face of climate change and increasing population. Traditional genetic engineering relies on random and unpredictable insertion of isolated genes or foreign DNA elements into the plant genome. However, CRISPR-Cas based gene editing does not necessarily involve inserting a foreign DNA element into the plant genome from different species but introducing new traits by precisely altering the existing genes. CRISPR edited crops are touching markets, however, the world community is divided over whether these crops should be considered genetically modified (GM) or non-GM. Classification of CRISPR edited crops, especially transgene free crops as traditional GM crops, will significantly affect their future and public acceptance in some regions. Therefore, the future of the CRISPR edited crops is depending upon their regulation as GM or non-GMs, and their public perception. Here we briefly discuss how CRISPR edited crops are different from traditional genetically modified crops. In addition, we discuss different CRISPR reagents and their delivery tools to produce transgene-free CRISPR edited crops. Moreover, we also summarize the regulatory classification of CRISPR modifications and how different countries are regulating CRISPR edited crops. We summarize that the controversy of CRISPR-edited plants as GM or non-GM will continue until a universal, transparent, and scalable regulatory framework for CRISPR-edited plants will be introduced worldwide, with increased public awareness by involving all stakeholders.
Phenotypic and genome-wide association analyses for nitrogen use efficiency related traits in maize (Zea mays L.) exotic introgression lines
Nitrogen (N) limits crop production, yet more than half of N fertilizer inputs are lost to the environment. Developing maize hybrids with improved N use efficiency can help minimize N losses and in turn reduce adverse ecological, economical, and health consequences. This study aimed to identify single nucleotide polymorphisms (SNPs) associated with agronomic traits (plant height, grain yield, and anthesis to silking interval) under high and low N conditions. A genome-wide association study (GWAS) was conducted using 181 doubled haploid (DH) lines derived from crosses between landraces from the Germplasm Enhancement of Maize (BGEM lines) project and two inbreds, PHB47 and PHZ51. These DH lines were genotyped using 62,077 SNP markers. The same lines from the
Genome-wide association mapping for yield-related traits in soybean (Glycine max) under well-watered and drought-stressed conditions
Soybean (
Effects of gamma radiation on engineered tomato biofortified for space agriculture by morphometry and fluorescence-based indices
Future long-term space missions will focus to the solar system exploration, with the Moon and Mars as leading goals. Plant cultivation will provide fresh food as a healthy supplement to astronauts’ diet in confined and unhealthy outposts. Ionizing radiation (IR) are a main hazard in outer space for their capacity to generate oxidative stress and DNA damage. IR is a crucial issue not only for human survival, but also for plant development and related value-added fresh food harvest. To this end, efforts to figure out how biofortification of plants with antioxidant metabolites (such as anthocyanins) may contribute to improve their performances in space outposts are needed.
MicroTom plants genetically engineered to express the
Responses to gamma radiation were influenced by the phenological stage, dose and genotype. Wild type and engineered plants did not complete a seed-to-seed cycle under the exceptional condition of 30 Gy absorbed dose, but were able to cope with 0.5 and 5 Gy producing fruits and vital seeds. In particular, the AN4-M seeds and plants showed advantages over wild type: negligible variation of fluorimetric parameters related to primary metabolism, no alteration or improvement of yield traits at maturity while maintaining smaller habitus than wild type, biosynthesis of anthocyanins and maintained levels of these compounds compared to non-irradiated controls of the same age.
These findings may be useful in understanding phenotypic effects of IR on plant growth in space, and lead to the exploitation of new breeding efforts to optimize plant performances to develop appropriate ideotypes for future long-term space exploration extending the potential of plants to serve as high-value product source.
Tomato disease object detection method combining prior knowledge attention mechanism and multiscale features
To address the challenges of insufficient accuracy in detecting tomato disease object detection caused by dense target distributions, large-scale variations, and poor feature information of small objects in complex backgrounds, this study proposes the tomato disease object detection method that integrates prior knowledge attention mechanism and multi-scale features (PKAMMF). Firstly, the visual features of tomato disease images are fused with prior knowledge through the prior knowledge attention mechanism to obtain enhanced visual features corresponding to tomato diseases. Secondly, a new feature fusion layer is constructed in the Neck section to reduce feature loss. Furthermore, a specialized prediction layer specifically designed to improve the model’s ability to detect small targets is incorporated. Finally, a new loss function known as A-SIOU (Adaptive Structured IoU) is employed to optimize the performance of the model in terms of bounding box regression. The experimental results on the self-built tomato disease dataset demonstrate the effectiveness of the proposed approach, and it achieves a mean average precision (mAP) of 91.96%, which is a 3.86% improvement compared to baseline methods. The results show significant improvements in the detection performance of multi-scale tomato disease objects.