The trans‐kingdom communication of noncoding RNAs in plant–environment interactions

Abstract

As conserved regulatory agents, noncoding RNAs (ncRNAs) have an important impact on many aspects of plant life, including growth, development, and environmental response. Noncoding RNAs can travel through not only plasmodesma and phloem but also intercellular barriers to regulate distinct processes. Increasing evidence shows that the intercellular trans-kingdom transmission of ncRNAs is able to modulate many important interactions between plants and other organisms, such as plant response to pathogen attack, the symbiosis between legume plants and rhizobia and the interactions with parasitic plants. In these interactions, plant ncRNAs are believed to be sorted into extracellular vesicles (EVs) or other nonvesicular vehicles to pass through cell barriers and trigger trans-kingdom RNA interference (RNAi) in recipient cells from different species. There is evidence that the features of extracellular RNAs and associated RNA-binding proteins (RBPs) play a role in defining the RNAs to retain in cell or secrete outside cells. Despite the few reports about RNA secretion pathway in plants, the export of extracellular ncRNAs is orchestrated by a series of pathways in plants. The identification and functional analysis of mobile small RNAs (sRNAs) are attracting increasing attention in recent years. In this review, we discuss recent advances in our understanding of the function, sorting, transport, and regulation of plant extracellular ncRNAs.

Insights into the roles of long noncoding RNAs in the communication between plants and the environment

Abstract

In addition to coding proteins, RNA molecules, especially long noncoding RNAs (lncRNAs), have well-established functions in regulating gene expression. The number of studies focused on the roles played by different types of lncRNAs in a variety of plant biological processes has markedly increased. These lncRNA roles involve plant vegetative and reproductive growth and responses to biotic and abiotic stresses. In this review, we examine the classification, mechanisms, and functions of lncRNAs and then emphasize the roles played by these lncRNAs in the communication between plants and the environment mainly with respect to the following environmental factors: temperature, light, water, salt stress, and nutrient deficiencies. We also discuss the consensus among researchers and the remaining challenges and underscore the exciting ways lncRNAs may affect the biology of plants.

Changes in epigenetic features in legumes under abiotic stresses

Abstract

Legume crops are rich in nutritional value for human and livestock consumption. With global climate change, developing stress-resilient crops is crucial for ensuring global food security. Because of their nitrogen-fixing ability, legumes are also important for sustainable agriculture. Various abiotic stresses, such as salt, drought, and elevated temperatures, are known to adversely affect legume production. The responses of plants to abiotic stresses involve complicated cellular processes including stress hormone signaling, metabolic adjustments, and transcriptional regulations. Epigenetic mechanisms play a key role in regulating gene expressions at both transcriptional and posttranscriptional levels. Increasing evidence suggests the importance of epigenetic regulations of abiotic stress responses in legumes, and recent investigations have extended the scope to the epigenomic level using next-generation sequencing technologies. In this review, the current knowledge on the involvement of epigenetic features, including DNA methylation, histone modification, and noncoding RNAs, in abiotic stress responses in legumes is summarized and discussed. Since most of the available information focuses on a single aspect of these epigenetic features, integrative analyses involving omics data in multiple layers are needed for a better understanding of the dynamic chromatin statuses and their roles in transcriptional regulation. The inheritability of epigenetic modifications should also be assessed in future studies for their applications in improving stress tolerance in legumes through the stable epigenetic optimization of gene expressions.