Genome assembly and multi‐omic analyses reveal the mechanisms underlying flower color formation in Torenia fournieri

Abstract

Torenia fournieri Lind. is an ornamental plant that is popular for its numerous flowers and variety of colors. However, its genomic evolutionary history and the genetic and metabolic bases of flower color formation remain poorly understood. Here, we report the first T. fournieri reference genome, which was resolved to the chromosome scale and was 164.4 Mb in size. Phylogenetic analyses clarified relationships with other plant species, and a comparative genomic analysis indicated that the shared ancestor of T. fournieri and Antirrhinum majus underwent a whole genome duplication event. Joint transcriptomic and metabolomic analyses identified many metabolites related to pelargonidin, peonidin, and naringenin production in rose (TfR)-colored flowers. Samples with blue (TfB) and deep blue (TfD) colors contained numerous derivatives of petunidin, cyanidin, quercetin, and malvidin; differences in the abundances of these metabolites and expression levels of the associated genes were hypothesized to be responsible for variety-specific differences in flower color. Furthermore, the genes encoding flavonoid 3-hydroxylase, anthocyanin synthase, and anthocyanin reductase were differentially expressed between flowers of different colors. Overall, we successfully identified key genes and metabolites involved in T. fournieri flower color formation. The data provided by the chromosome-scale genome assembly establish a basis for understanding the differentiation of this species and will facilitate future genetic studies and genomic-assisted breeding.

Genome‐wide scanning to identify and validate single nucleotide polymorphism markers associated with drought tolerance in spring wheat seedlings

Abstract

Unlike other growth stages of wheat, very few studies on drought tolerance have been done at the seedling stage, and this is due to the complexity and sensitivity of this stage to drought stress resulting from climate change. As a result, the drought tolerance of wheat seedlings is poorly understood and very few genes associated with drought tolerance at this stage were identified. To address this challenge, a set of 172 spring wheat genotypes representing 20 different countries was evaluated under drought stress at the seedling stage. Drought stress was applied on all tested genotypes by water withholding for 13 days. Two types of traits, namely morphological and physiological traits were scored on the leaves of all tested genotypes. Genome-wide association study (GWAS) is one of the effective genetic analysis methods that was used to identify target single nucleotide polymorphism (SNP) markers and candidate genes for later use in marker-assisted selection. The tested plant materials were genotyped using 25k Infinium iSelect array (25K) (herein after it will be identified as 25K) (for 172 genotypes) and genotyping-by-sequencing (GBS) (for 103 genotypes), respectively. The results of genotyping revealed 21,093 25K and 11,362 GBS-SNPs, which were used to perform GWAS analysis for all scored traits. The results of GWAS revealed that 131 and 55 significant SNPs were controlling morphological and physiological traits, respectively. Moreover, a total of eight and seven SNP markers were found to be associated with more than one morphological and physiological trait under drought stress, respectively. Remarkably, 10 significant SNPs found in this study were previously reported for their association with drought tolerance in wheat. Out of the 10 validated SNP markers, four SNPs were associated with drought at the seedling stage, while the remaining six SNPs were associated with drought stress at the reproductive stage. Moreover, the results of gene enrichment revealed 18 and six pathways as highly significant biological and molecular pathways, respectively. The selection based on drought-tolerant alleles revealed 15 genotypes with the highest number of different drought-tolerant alleles. These genotypes can be used as candidate parents in future breeding programs to produce highly drought-tolerant genotypes with high genetic diversity. Our findings in this study provide novel markers and useful information on the genetic basis of drought tolerance at early growth stages.

The ancestral karyotype of the Heliantheae Alliance, herbicide resistance, and human allergens: Insights from the genomes of common and giant ragweed

Abstract

Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype—a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.

A chromosome‐level genome of mango exclusively from long‐read sequence data

Abstract

Improvements in long-read sequencing techniques have greatly accelerated plant genome sequencing. Current de novo assemblies are routinely achieved by assembling long-read sequence data into contigs that are assembled to chromosome level by chromatin conformation capture. We report here a chromosome-level mango genome using only PacBio high-fidelity (HiFi) long reads. HiFi reads at high coverage (204x) resulted in the assembly of 17 chromosomes, each as a single contig with telomeres at both ends. The remaining three chromosomes were represented each by two contigs, with telomeres at one end and ribosomal repeats at the other end. Analyzing contig ends allowed them to be paired and linked to generate the remaining three complete chromosomes, telomere-to-telomere but with ribosomal repeats of uncertain length. The assembled genome was 365 Mb with 100% completeness as assessed by Benchmarking Universal Single-Copy Orthologs analysis. The haplotypes assembled demonstrated extensive structural differences. This approach using very high genome coverage may be useful for assembling high-quality genomes for many other plants.

Mapping the genetic architecture of low‐temperature stress tolerance in citron watermelon

Abstract

Sweet-fleshed watermelon (Citrullus lanatus) is an important vegetable crop of the tropical origin. It is widely grown and consumed around the world for its hydration and nutritional quality values. Low-temperature stress can affect early planting, seedling establishment, and expansion of crop production to new areas. A collection of 122 citron watermelon (Citrullus amarus) accessions were obtained from the USDA's National Plant Germplasm Repository System gene bank in Griffin, GA. The accessions were genotyped using whole genome resequencing to generate single nucleotide polymorphisms (SNPs) molecular markers and screened under cold-stressed and non-stressed control conditions. Four low-temperature stress tolerance related traits including shoot biomass, vine length, maximum quantum efficiency of photosystem II, and chlorophyll content were measured under cold-stressed and non-stressed control treatment conditions. Correlation analysis revealed the presence of positive relationships among traits. Broad-sense heritability for all traits ranged from 0.35 to 0.73, implying the presence of genetic contributions to the observed phenotypic variation. Genomic regions underlying these traits across several citron watermelon chromosomes were identified. Four low-temperature stress tolerance related putative candidate genes co-located with the peak SNPs from genome-wide association study. These genomic regions and marker information could potentially be used in molecular breeding to accelerate genetic improvements for low-temperature stress tolerance in watermelon.

Cloning and functional analysis of Gb4CL1 and Gb4CL2 from Ginkgo biloba

Abstract

4-Coumarate-CoA ligase (4CL) gene plays vital roles in plant growth and development, especially the regulation of lignin metabolism and flavonoid synthesis. To investigate the potential function of 4CL in the lignin biosynthesis of Ginkgo biloba, this study identified two 4CL genes, Gb4CL1 and Gb4CL2, from G. biloba genome. Based on the phylogenetic tree analysis, Gb4CL1 and Gb4CL2 protein were classified into Class I, which has been confirmed to be involved in lignin biosynthesis. Therefore, it can be inferred that these two genes may also participate in lignin metabolism. The tissue-specific expression patterns of these two genes revealed that Gb4CL1 was highly expressed in microstrobilus, whereas Gb4CL2 was abundant in immature leaves. The onion transient expression assay indicated that Gb4CL1 was predominantly localized in the nucleus, indicating its potential involvement in nuclear functions, while Gb4CL2 was observed in the cell wall, suggesting its role in cell wall-related processes. Phytohormone response analysis revealed that the expression of both genes was upregulated in response to indole acetic acid, while methyl jasmonate suppressed it, gibberellin exhibited opposite effects on these genes. Furthermore, Gb4CL1 and Gb4CL2 expressed in all tissues containing lignin that showed a positive correlation with lignin content. Thus, these findings suggest that Gb4CL1 and Gb4CL2 are likely involved in lignin biosynthesis. Gb4CL1 and Gb4CL2 target proteins were successfully induced in Escherichia coli BL21 with molecular weights of 85.5 and 89.2 kDa, proving the integrity of target proteins. Our findings provided a basis for revealing that Gb4CL participated in lignin synthesis in G. biloba.

Validation of sorghum quality control (QC) markers across African breeding lines

Abstract

Sorghum [Sorghum bicolor (L.) Moench] is a cereal crop of critical importance in the semi-arid tropics, particularly in Africa where it is second only to maize (Zea mays L.) by area of cultivation. The International Crops Research Institute for the Semi-Arid Tropics sorghum breeding program for Eastern and Southern Africa is the largest in the region and develops improved varieties for target agro-ecologies. Varietal purity and correct confirmation of new crosses are essential for the integrity and efficiency of a breeding program. We used 49 quality control (QC) kompetitive allele-specific PCR single nucleotide polymorphism (SNP) markers to genotype 716 breeding lines. Note that 46 SNPs were polymorphic with the top 10 most informative revealing polymorphism information content (PIC), minor allele frequency (MAF), and observed heterozygosity (H o) of 0.37, 0.43, and 0.02, respectively, and explaining 45% of genetic variance within the first two principal components (PC). Thirty-nine markers were highly informative across 16 Burkina Faso breeding lines, out of which the top 10 revealed average PIC, MAF, and H o of 0.36, 0.39, and 0.05, respectively. Discriminant analysis of principal components done using top 30 markers separated the breeding lines into five major clusters, three of which were distinct. Six of the top 10 most informative markers successfully confirmed hybridization of crosses between genotypes IESV240, KARIMTAMA1, F6YQ212, and FRAMIDA. A set of 10, 20, and 30 most informative markers are recommended for routine QC applications. Future effort should focus on the deployment of these markers in breeding programs for enhanced genetic gain.

A Bayesian optimization R package for multitrait parental selection

Abstract

Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package—an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback–Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions—EvalMPS, FastMPS, and ApproxMPS—catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.

Approaches and progress in breeding drought‐tolerant maize hybrids for tropical lowlands in west and central Africa

Abstract

Drought represents a significant production challenge to maize farmers in West and Central Africa, causing substantial economic losses. Breeders at the International Institute of Tropical Agriculture have therefore been developing drought-tolerant maize varieties to attain high grain yields in rainfed maize production zones. The present review provides a historical overview of the approaches used and progress made in developing drought-tolerant hybrids over the years. Breeders made a shift from a wide area testing approach, to the use of managed screening sites, to precisely control the intensity, and timing of drought stress for developing drought-tolerant maize varieties. These sites coupled with the use of molecular markers allowed choosing suitable donors with drought-adaptive alleles for integration into existing elite maize lines to generate new drought-tolerant inbred lines. These elite maize inbred lines have then been used to develop hybrids with enhanced tolerance to drought. Genetic gains estimates were made using performance data of drought-tolerant maize hybrids evaluated in regional trials for 11 years under managed drought stress, well-watered conditions, and across diverse rainfed environments. The results found significant linear annual yield gains of 32.72 kg ha−1 under managed drought stress, 38.29 kg ha−1 under well-watered conditions, and 66.57 kg ha−1 across multiple rainfed field environments. Promising hybrids that deliver high grain yields were also identified for areas affected by drought and variable rainfed growing conditions. The significant genetic correlations found among the three growing conditions highlight the potential to exploit the available genetic resources and modern tools to further enhance tolerance to drought in hybrids.