A view of the pan‐genome of domesticated Cowpea (Vigna unguiculata [L.] Walp.)

Abstract

Cowpea, Vigna unguiculata L. Walp., is a diploid warm-season legume of critical importance as both food and fodder in sub-Saharan Africa. This species is also grown in Northern Africa, Europe, Latin America, North America, and East to Southeast Asia. To capture the genomic diversity of domesticates of this important legume, de novo genome assemblies were produced for representatives of six subpopulations of cultivated cowpea identified previously from genotyping of several hundred diverse accessions. In the most complete assembly (IT97K-499-35), 26,026 core and 4963 noncore genes were identified, with 35,436 pan genes when considering all seven accessions. GO terms associated with response to stress and defense response were highly enriched among the noncore genes, while core genes were enriched in terms related to transcription factor activity, and transport and metabolic processes. Over 5 million single nucleotide polymorphisms (SNPs) relative to each assembly and over 40 structural variants >1 Mb in size were identified by comparing genomes. Vu10 was the chromosome with the highest frequency of SNPs, and Vu04 had the most structural variants. Noncore genes harbor a larger proportion of potentially disruptive variants than core genes, including missense, stop gain, and frameshift mutations; this suggests that noncore genes substantially contribute to diversity within domesticated cowpea.

Genomic‐assisted breeding for climate‐smart coffee

Abstract

Coffee is a universal beverage that drives a multi-industry market on a global basis. Today, the sustainability of coffee production is threatened by accelerated climate changes. In this work, we propose the implementation of genomic-assisted breeding for climate-smart coffee in Coffea canephora. This species is adapted to higher temperatures and is more resilient to biotic and abiotic stresses. After evaluating two populations, over multiple harvests, and under severe drought weather condition, we dissected the genetic architecture of yield, disease resistance, and quality-related traits. By integrating genome-wide association studies and diallel analyses, our contribution is four-fold: (i) we identified a set of molecular markers with major effects associated with disease resistance and post-harvest traits, while yield and plant architecture presented a polygenic background; (ii) we demonstrated the relevance of nonadditive gene actions and projected hybrid vigor when genotypes from different geographically botanical groups are crossed; (iii) we computed medium-to-large heritability values for most of the traits, representing potential for fast genetic progress; and (iv) we provided a first step toward implementing molecular breeding to accelerate improvements in C. canephora. Altogether, this work is a blueprint for how quantitative genetics and genomics can assist coffee breeding and support the supply chain in the face of the current global changes.

Meta‐QTL s and haplotypes for efficient zinc biofortification of rice

Abstract

Biofortification of rice with improved grain zinc (Zn) content is the most sustainable and cost-effective approach to address Zn malnutrition in Asia. Genomics-assisted breeding using precise and consistent Zn quantitative trait loci (QTLs), genes, and haplotypes can fast-track the development of Zn biofortified rice varieties. We conducted the meta-analysis of 155 Zn QTLs reported from 26 different studies. Results revealed 57 meta-QTLs with a significant reduction of 63.2% and 80% in the number and confidence interval of the Zn QTLs, respectively. Meta-quantitative trait loci (MQTLs) regions were found to be enriched with diverse metal homeostasis genes; at least 11 MQTLs were colocated with 20 known major genes involved in the production of root exudates, metal uptake, transport, partitioning, and loading into grains in rice. These genes were differentially expressed in vegetative and reproductive tissues, and a complex web of interactions were observed among them. We identified superior haplotypes and their combinations for nine candidate genes (CGs), and the frequency and allelic effects of superior haplotypes varied in different subgroups. The precise MQTLs with high phenotypic variance, CGs, and superior haplotypes identified in our study are useful for an efficient Zn biofortification of rice and to ensure Zn as an essential component of all the future rice varieties through mainstreaming of Zn breeding.

Current technical advancements in plant epitranscriptomic studies

Abstract

The growth and development of plants are the result of the interplay between the internal developmental programming and plant–environment interactions. Gene expression regulations in plants are made up of multi-level networks. In the past few years, many studies were carried out on co- and post-transcriptional RNA modifications, which, together with the RNA community, are collectively known as the “epitranscriptome.” The epitranscriptomic machineries were identified and their functional impacts characterized in a broad range of physiological processes in diverse plant species. There is mounting evidence to suggest that the epitranscriptome provides an additional layer in the gene regulatory network for plant development and stress responses. In the present review, we summarized the epitranscriptomic modifications found so far in plants, including chemical modifications, RNA editing, and transcript isoforms. The various approaches to RNA modification detection were described, with special emphasis on the recent development and application potential of third-generation sequencing. The roles of epitranscriptomic changes in gene regulation during plant–environment interactions were discussed in case studies. This review aims to highlight the importance of epitranscriptomics in the study of gene regulatory networks in plants and to encourage multi-omics investigations using the recent technical advancements.

Genome‐wide association mapping for pre‐harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes

Abstract

Pre-harvest sprouting (PHS), germination of seeds before harvest, is a major problem in global wheat (Triticum aestivum L.) production, and leads to reduced bread-making quality in affected grain. Breeding for PHS resistance can prevent losses under adverse conditions. Selecting resistant lines in years lacking pre-harvest rain, requires challenging of plants in the field or in the laboratory or using genetic markers. Despite the availability of a wheat reference and pan-genome, linking markers, genes, allelic, and structural variation, a complete understanding of the mechanisms underlying various sources of PHS resistance is still lacking. Therefore, we challenged a population of European wheat varieties and breeding lines with PHS conditions and phenotyped them for PHS traits, grain quality, phenological and agronomic traits to conduct genome-wide association mapping. Furthermore, we compared these marker-trait associations to previously reported PHS loci and evaluated their usefulness for breeding. We found markers associated with PHS on all chromosomes, with strong evidence for novel quantitative trait locus/loci (QTL) on chromosome 1A and 5B. The QTL on chromosome 1A lacks pleiotropic effect, for the QTL on 5B we detected pleiotropic effects on phenology and grain quality. Multiple peaks on chromosome 4A co-located with the major resistance locus Phs-A1, for which two causal genes, TaPM19 and TaMKK3, have been proposed. Mapping markers and genes to the pan-genome and chromosomal alignments provide evidence for structural variation around this major PHS-resistance locus. Although PHS is controlled by many loci distributed across the wheat genome, Phs-A1 on chromosome 4A seems to be the most effective and widely deployed source of resistance, in European wheat varieties.

Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.)

Abstract

The grain-filling stage in Triticum aestivum (wheat) is highly vulnerable to increasing temperature as terminal heat stress diminishes grain quality and yield. To examine the mechanism of terminal heat tolerance, we performed the biochemical and gene expression analyses using two heat-tolerant (WH730 and WH1218) and two heat-sensitive (WH711 and WH157) wheat genotypes. We observed a significant increase in total soluble sugar (25%–47%), proline (7%–15%), and glycine betaine (GB) (22%–34%) contents in flag leaf, whereas a decrease in grain-filling duration, 1000-kernel weight (8%–25%), and grain yield per plant (11%–23%) was observed under the late-sown compared to the timely sown. The maximum content of osmolytes, including total soluble sugar, proline, and GB, was observed in heat-tolerant genotypes compared to heat-sensitive genotypes. The expression of 10 heat-responsive genes associated with heat shock proteins (sHsp-1, Hsp17, and HsfA4), flavonoid biosynthesis (F3′-1 and PAL), β-glucan synthesis (CslF6 and CslH), and xyloglucan metabolism (XTH1, XTH2, and XTH5) was studied in flag leaf exposed to different heat treatments (34, 36, 38, and 40°C) at 15 days after anthesis by quantitative real-time polymerase chain reaction. A significant increase in the relative fold expression of these genes with increasing temperature indicated their involvement in providing heat-stress tolerance. The high differential expression of most of the genes in heat-tolerant genotype “WH730” followed by “WH1218” indicates the high adaptability of these genotypes to heat stress compared to heat-sensitive wheat genotypes. Based on the previous results, “WH730” performed better in terms of maximum osmolyte accumulation, grain yield, and gene expression under heat stress.

RADseq‐based population genomic analysis and environmental adaptation of rare and endangered recretohalophyte Reaumuria trigyna

Abstract

Genetic diversity reflects the survival potential, history, and population dynamics of an organism. It underlies the adaptive potential of populations and their response to environmental change. Reaumuria trigyna is an endemic species in the Eastern Alxa and West Ordos desert regions in China. The species has been considered a good candidate to explore the unique survival strategies of plants that inhabit this area. In this study, we performed population genomic analyses based on restriction-site associated DNA sequencing to understand the genetic diversity, population genetic structure, and differentiation of the species. Analyses of 92,719 high-quality single-nucleotide polymorphisms (SNPs) indicated that overall genetic diversity of R. trigyna was low (HO  = 0.249 and HE  = 0.208). No significant genetic differentiation was observed among the investigated populations. However, a subtle population genetic structure was detected. We suggest that this might be explained by adaptive diversification reinforced by the geographical isolation of populations. Overall, 3513 outlier SNPs were located in 243 gene-coding sequences in the R. trigyna transcriptome. Potential sites under diversifying selection occurred in genes (e.g., AP2/EREBP, E3 ubiquitin-protein ligase, FLS, and 4CL) related to phytohormone regulation and synthesis of secondary metabolites which have roles in adaptation of species. Our genetic analyses provide scientific criteria for evaluating the evolutionary capacity of R. trigyna and the discovery of unique adaptions. Our findings extend knowledge of refugia, environmental adaption, and evolution of germplasm resources that survive in the Ordos area.

A wheat chromosome segment substitution line series supports characterization and use of progenitor genetic variation

Abstract

Genome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.) chromosome segment substitution lines (CSSLs) generated to systematically capture genetic variation from tetraploid (T. turgidum ssp. dicoccoides) and diploid (Aegilops tauschii) progenitor species. Generated in a common genetic background over four generations of backcrossing, this is a base resource for the mapping and characterization of wheat progenitor variation. To facilitate further exploitation the final population was genetically characterized using a high-density genotyping array and a range of agronomic and grain traits assessed to demonstrate the potential use of the populations for trait localization in wheat.

Genetic dissection of monosaccharides contents in rice whole grain using genome‐wide association study

Abstract

The simplest form of carbohydrates are monosaccharides which are the building blocks for the synthesis of polymers or complex carbohydrates. Monosaccharide contents of 197 rice accessions were quantified by HPAEC-PAD in rice (Oryza sativa L.) whole grain (RWG). A genome-wide association study (GWAS) was carried out using 33,812 single nucleotide polymorphisms (SNPs) to identify corresponding genomic regions influencing neutral monosaccharides contents. In total, 49 GWAS signals contained in 17 genomic regions (quantitative trait loci [QTLs]) on seven chromosomes of rice were determined to be associated with monosaccharides contents of whole grain. The QTLs were found for fucose (1), mannose (1), xylose (2), arabinose (2), galactose (4), and rhamnose (7) contents, all of which are novel. Based on co-location of annotated rice genes in the vicinity of GWAS signals, the constituents of the whole grain were associated with the following candidate genes: arabinose content with α-N-arabinofuranosidase, pectinesterase inhibitor, and glucosamine-fructose-6-phosphate aminotransferase 1; xylose content with ZOS1-10 (a C2H2 zinc finger transcription factor [TF]); mannose content with aldose 1-epimerase-like protein and a MYB family TF; galactose content with a GT8 family member (galacturonosyltransferase-like 3), a GRAS family TF, and a GH16 family member (xyloglucan endotransglucosylase/hydrolase xyloglucan 23); fucose content with gibberellin 20 oxidase and a lysine-rich arabinogalactan protein 19, and finally rhamnose content with myo-inositol-1-phosphate synthase, UDP-arabinopyranose mutase, and COBRA-like protein precursor. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in the biosynthesis, regulation, and turnover of monosaccharides in RWG, aiming to enhance the nutritional value of rice grain and impact the related industries.

Genomic prediction of tocochromanols in exotic‐derived maize

Abstract

Tocochromanols (vitamin E) are an essential part of the human diet. Plant products, including maize (Zea mays L.) grain, are the major dietary source of tocochromanols; therefore, breeding maize with higher vitamin content (biofortification) could improve human nutrition. Incorporating exotic germplasm in maize breeding for trait improvement including biofortification is a promising approach and an important research topic. However, information about genomic prediction of exotic-derived lines using available training data from adapted germplasm is limited. In this study, genomic prediction was systematically investigated for nine tocochromanol traits within both an adapted (Ames Diversity Panel [AP]) and an exotic-derived (Backcrossed Germplasm Enhancement of Maize [BGEM]) maize population. Although prediction accuracies up to 0.79 were achieved using genomic best linear unbiased prediction (gBLUP) when predicting within each population, genomic prediction of BGEM based on an AP training set resulted in low prediction accuracies. Optimal training population (OTP) design methods fast and unique representative subset selection (FURS), maximization of connectedness and diversity (MaxCD), and partitioning around medoids (PAM) were adapted for inbreds and, along with the methods mean coefficient of determination (CDmean) and mean prediction error variance (PEVmean), often improved prediction accuracies compared with random training sets of the same size. When applied to the combined population, OTP designs enabled successful prediction of the rest of the exotic-derived population. Our findings highlight the importance of leveraging genotype data in training set design to efficiently incorporate new exotic germplasm into a plant breeding program.