Genetic variation in a tepary bean (Phaseolus acutifolius A. Gray) diversity panel reveals loci associated with biotic stress resistance

Abstract

Tepary bean (Phaseolus acutifolius A. Gray), indigenous to the arid climates of northern Mexico and the Southwest United States, diverged from common bean (Phaseolus vulgaris L.), approximately 2 million years ago and exhibits a wide range of resistance to biotic stressors. The tepary genome is highly syntenic to the common bean genome providing a foundation for discovery and breeding of agronomic traits between these two crop species. Although a limited number of adaptive traits from tepary bean have been introgressed into common bean, hybridization barriers between these two species required the development of bridging lines to alleviate this barrier. Thus, to fully utilize the extant tepary bean germplasm as both a crop and as a donor of adaptive traits, we developed a diversity panel of 422 cultivated, weedy, and wild tepary bean accessions which were then genotyped and phenotyped to enable population genetic analyses and genome-wide association studies for their response to a range of biotic stressors. Population structure analyses of the panel revealed eight subpopulations and the differentiation of botanical varieties within P. acutifolius. Genome-wide association studies revealed loci and candidate genes underlying biotic stress resistance including quantitative trait loci for resistance to weevils, common bacterial blight, Fusarium wilt, and bean common mosaic necrosis virus that can be harnessed not only for tepary bean but also common bean improvement.

The role of microRNAs in responses to drought and heat stress in peanut (Arachis hypogaea)

Abstract

MicroRNAs (miRNAs) are 21–24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.

A chromosome‐scale reference of Chenopodium watsonii helps elucidate relationships within the North American A‐genome Chenopodium species and with quinoa

Abstract

Quinoa (Chenopodium quinoa), an Andean pseudocereal, attained global popularity beginning in the early 2000s due to its protein quality, glycemic index, and high fiber, vitamin, and mineral contents. Pitseed goosefoot (Chenopodium berlandieri), quinoa's North American free-living sister species, grows on disturbed and sandy substrates across the North America, including saline coastal sands, southwestern deserts, subtropical highlands, the Great Plains, and boreal forests. Together with South American avian goosefoot (Chenopodium hircinum) they comprise the American tetraploid goosefoot complex (ATGC). Superimposed on pitseed goosefoot's North American range are approximately 35 AA diploids, most of which are adapted to a diversity of niche environments. We chose to assemble a reference genome for Sonoran A-genome Chenopodium watsonii due to fruit morphological and high (>99.3%) preliminary sequence-match similarities with quinoa, along with its well-established taxonomic status. The genome was assembled into 1377 scaffolds spanning 547.76 Mb (N50 = 55.14 Mb, L50 = 5), with 94% comprised in nine chromosome-scale scaffolds and 93.9% Benchmarking Universal Single-Copy Orthologs genes identified as single copy and 3.4% as duplicated. A high degree of synteny, with minor and mostly telomeric rearrangements, was found when comparing this taxon with the previously reported genome of South American C. pallidicaule and the A-subgenome chromosomes of C. quinoa. Phylogenetic analysis was performed using 10,588 single-nucleotide polymorphisms generated by resequencing a panel of 41 New World AA diploid accessions and the Eurasian H-genome diploid Chenopodium vulvaria, along with three AABB tetraploids previously sequenced. Phylogenetic analysis of these 32 taxa positioned the psammophyte Chenopodium subglabrum on the branch containing A-genome sequences from the ATGC. We also present evidence for long-range dispersal of Chenopodium diploids between North and South America.

Antimicrobial peptides in Dendrobium officinale: Genomic parameters, peptide structures, and gene expression patterns

Abstract

A weak codon usage bias was found in Dendrobium catenatum (D. officiale) antimicrobial peptides (AMPs), after the analysis of relative synonymous codon usage, GC contents, and the effective number of codons. The codon usage preference was mainly influenced by natural selection pressure. The self-optimized prediction method and SWISS-MODEL were applied for peptide structural and domain analyses, and some typical antimicrobial domains were found in D. officinale AMP amino sequences, such as knot1 domain, gibberellins-stimulated domain, cupin_1 domain, defensin_like domain, and SLR1-BP (S locus-related glycoprotein 1 binding pollen coat protein) domain. To investigate the AMPs gene expression pattern, abiotic stresses, such as salt stress, drought stress, salicylic acid (SA), and methyl jasmonate (JA), were applied and the gene expression levels were detected by the real-time fluorescent quantitative polymerase chain reaction. Results showed that, even though the basic AMPs gene expressions were low, some AMPs can still be induced by salt dress, while the drought dress did not show the same impact. The SA and JA signaling pathways might be involved in most of the AMPs expressions. The natural selection of the D. officinale AMPs and thus forming diverse types of AMPs enhanced the plant's innate immunity and disease resistance capability, which would lead to a better understanding of the molecular mechanism for D. officinale adapting to the environment. The finding that salt stress, SA, and JA signaling pathways can induce AMP expression lays a foundation for the further development and functional verification of D. officinale AMPs.

The conservation of gene models can support genome annotation

Abstract

Many genome annotations include false-positive gene models, leading to errors in phylogenetic and comparative studies. Here, we propose a method to support gene model prediction based on evolutionary conservation and use it to identify potentially erroneous annotations. Using this method, we developed a set of 15,345 representative gene models from 12 legume assemblies that can be used to support genome annotations for other legumes.

Meta‐analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.)

Abstract

A meta-analysis of quantitative trait loci (QTLs), associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits was conducted for the first time in pigeonpea (Cajanus cajan L.). Data on 498 QTLs was collected from 9 linkage mapping studies (involving 21 biparental populations). Of these 498, 203 QTLs were projected onto “PigeonPea_ConsensusMap_2022,” saturated with 10,522 markers, which resulted in the prediction of 34 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs (2.54 cM) was 3.37 times lower than the CI of the initial QTLs (8.56 cM). Of the 34 MQTLs, 12 high-confidence MQTLs with CI (≤5 cM) and a greater number of initial QTLs (≥5) were utilized to extract 2255 gene models, of which 105 were believed to be associated with different traits under study. Furthermore, eight of these MQTLs were observed to overlap with several marker-trait associations or significant SNPs identified in previous genome-wide association studies. Furthermore, synteny and ortho-MQTL analyses among pigeonpea and four related legumes crops, such as chickpea, pea, cowpea, and French bean, led to the identification of 117 orthologous genes from 20 MQTL regions. Markers associated with MQTLs can be employed for MQTL-assisted breeding as well as to improve the prediction accuracy of genomic selection in pigeonpea. Additionally, MQTLs may be subjected to fine mapping, and some of the promising candidate genes may serve as potential targets for positional cloning and functional analysis to elucidate the molecular mechanisms underlying the target traits.

Transcriptome profiling reveals the expression and regulation of genes associated with Fusarium wilt resistance in chickpea (Cicer arietinum L.)

Abstract

Fusarium wilt (FW) is one of the most significant biotic stresses limiting chickpea production worldwide. To dissect the molecular mechanism of FW resistance in chickpea, comparative transcriptome analyses of contrasting resistance sources of chickpea genotypes under control and Fusarium oxysporum f. sp. ciceris (Foc) inoculated conditions were performed. The high-throughput transcriptome sequencing generated about 1137 million sequencing reads from 24 samples representing two resistant genotypes, two susceptible genotypes, and two near-isogenic lines under control and stress conditions at two-time points (7th- and 12th-day post-inoculation). The analysis identified 5182 differentially expressed genes (DEGs) between different combinations of chickpea genotypes. Functional annotation of these genes indicated their involvement in various biological processes such as defense response, cell wall biogenesis, secondary metabolism, and disease resistance. A significant number (382) of transcription factor encoding genes exhibited differential expression patterns under stress. Further, a considerable number of the identified DEGs (287) co-localized with previously reported quantitative trait locus for FW resistance. Several resistance/susceptibility-related genes, such as SERINE/THREONINE PROTEIN KINASE, DIRIGENT, and MLO exhibiting contrasting expression patterns in resistant and susceptible genotypes upon Foc inoculation, were identified. The results presented in the study provide valuable insights into the transcriptional dynamics associated with FW stress response in chickpea and provide candidate genes for the development of disease-resistant chickpea cultivars.

Utilization of a publicly available diversity panel in genomic prediction of Fusarium head blight resistance traits in wheat

Abstract

Fusarium head blight (FHB) is an economically and environmentally concerning disease of wheat (Triticum aestivum L). A two-pronged approach of marker-assisted selection coupled with genomic selection has been suggested when breeding for FHB resistance. A historical dataset comprised of entries in the Southern Uniform Winter Wheat Scab Nursery (SUWWSN) from 2011 to 2021 was partitioned and used in genomic prediction. Two traits were curated from 2011 to 2021 in the SUWWSN: percent Fusarium damaged kernels (FDK) and deoxynivalenol (DON) content. Heritability was estimated for each trait-by-environment combination. A consistent set of check lines was drawn from each year in the SUWWSN, and k-means clustering was performed across environments to assign environments into clusters. Two clusters were identified as FDK and three for DON. Cross-validation on SUWWSN data from 2011 to 2019 indicated no outperforming training population in comparison to the combined dataset. Forward validation for FDK on the SUWWSN 2020 and 2021 data indicated a predictive accuracy r≈0.58$r \approx 0.58$ and r≈0.53$r \approx 0.53$, respectively. Forward validation for DON indicated a predictive accuracy of r≈0.57$r \approx 0.57$ and r≈0.45$r \approx 0.45$, respectively. Forward validation using environments in cluster one for FDK indicated a predictive accuracy of r≈0.65$r \approx 0.65$ and r≈0.60$r \approx 0.60$, respectively. Forward validation using environments in cluster one for DON indicated a predictive accuracy of r≈0.67$r \approx 0.67$ and r≈0.60$r \approx 0.60$, respectively. These results indicated that selecting environments based on check performance may produce higher forward prediction accuracies. This work may be used as a model for utilizing public resources for genomic prediction of FHB resistance traits across public wheat breeding programs.

Temporally gene knockout using heat shock–inducible genome‐editing system in plants

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) has emerged as a powerful tool to generate targeted loss-of-function mutations for functional genomic studies. As a next step, tools to generate genome modifications in a spatially and temporally precise manner will enable researchers to further dissect gene function. Here, we present two heat shock–inducible genome-editing (IGE) systems that efficiently edit target genes when the system is induced, thus allowing us to target specific developmental stages. For this conditional editing system, we chose the natural heat-inducible promoter from heat-shock protein 18.2 (HSP18.2) from Arabidopsis thaliana and the synthetic heat–inducible promoter heat shock–response element HSE-COR15A to drive the expression of Cas9. We tested these two IGE systems in Arabidopsis using cyclic or continuous heat-shock treatments at the seedling and bolting stages. A real-time quantitative polymerase chain reaction analysis revealed that the HSP18.2 IGE system exhibited higher Cas9 expression levels than the HSE-COR15A IGE system upon both cyclic and continuous treatments. By targeting brassinosteroid-insensitive 1 (BRI1) and phytoene desaturase (PDS), we demonstrate that both cyclic and continuous heat inductions successfully activated the HSP18.2 IGE system at the two developmental stages, resulting in highly efficient targeted mutagenesis and clear phenotypic outcomes. By contrast, the HSE-COR15A IGE system was only induced at the seedling stage and was less effective than the HSP18.2 IGE system in terms of mutagenesis frequencies. The presented heat shock–IGE systems can be conditionally induced to efficiently inactivate genes at any developmental stage and are uniquely suited for the dissection and systematic characterization of essential genes.