k‐mer‐based GWAS enhances the discovery of causal variants and candidate genes in soybean

Abstract

Genome-wide association studies (GWAS) are powerful statistical methods that detect associations between genotype and phenotype at genome scale. Despite their power, GWAS frequently fail to pinpoint the causal variant or the gene controlling a given trait in crop species. Assessing genetic variants other than single-nucleotide polymorphisms (SNPs) could alleviate this problem. In this study, we tested the potential of structural variant (SV)- and k-mer-based GWAS in soybean by applying these methods as well as conventional SNP/indel-based GWAS to 13 traits. We assessed the performance of each GWAS approach based on loci for which the causal genes or variants were known from previous genetic studies. We found that k-mer-based GWAS was the most versatile approach and the best at pinpointing causal variants or candidate genes. Moreover, k-mer-based analyses identified promising candidate genes for loci related to pod color, pubescence form, and resistance to Phytophthora sojae. In our dataset, SV-based GWAS did not add value compared to k-mer-based GWAS and may not be worth the time and computational resources invested. Despite promising results, significant challenges remain regarding the downstream analysis of k-mer-based GWAS. Notably, better methods are needed to associate significant k-mers with sequence variation. Our results suggest that coupling k-mer- and SNP/indel-based GWAS is a powerful approach for discovering candidate genes in crop species.

Unravelling marker trait associations linking nutritional value with pigmentation in rice seed

Abstract

While considerable breeding effort has focused on increasing the yields of staple crops such as rice and the levels of micronutrients such as iron and zinc, breeding to address the problems of the double-burden of malnutrition has received less attention. Pigmented rice has higher nutritional value and greater health benefits compared to white rice. However, the genetic associations underlying pericarp coloration and accumulation of nutritionally valuable compounds is still poorly understood. Here we report the targeted genetic analysis of 364 rice accessions, assessing the genetic relationship between pericarp coloration (measured using multi-spectral imaging) and a range of phenolic compounds with potential nutritional and health-promoting characteristics. A genome-wide association study resulted in the identification of over 280 single nucleotide polymorphisms (SNPs) associated with the traits of interest. Many of the SNPs were associated with more than one trait, colocalization occurring between nutritional traits, and nutritional and color-related traits. Targeted association analysis identified 67 SNPs, located within 52 candidate genes and associated with 24 traits. Six haplotypes identified within the genes Rc/bHLH17 and OsIPT5 indicated that these genes have an important role in the regulation of a wide range of phenolic compounds, and not only those directly conferring pericarp color. These identified genetic linkages between nutritionally valuable phenolic compounds and pericarp color present not only a valuable resource for the enhancement of the nutritional value of rice but an easy method of selection of suitable genotypes.

Maize and heat stress: Physiological, genetic, and molecular insights

Abstract

Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.

Genomic prediction of seed nutritional traits in biparental families of oat (Avena sativa)

Abstract

Selection for more nutritious crop plants is an important goal of plant breeding to improve food quality and contribute to human health outcomes. While there are efforts to integrate genomic prediction to accelerate breeding progress, an ongoing challenge is identifying strategies to improve accuracy when predicting within biparental populations in breeding programs. We tested multiple genomic prediction methods for 12 seed fatty acid content traits in oat (Avena sativa L.), as unsaturated fatty acids are a key nutritional trait in oat. Using two well-characterized oat germplasm panels and other biparental families as training populations, we predicted family mean and individual values within families. Genomic prediction of family mean exceeded a mean accuracy of 0.40 and 0.80 using an unrelated and related germplasm panel, respectively, where the related germplasm panel outperformed prediction based on phenotypic means (0.54). Within family prediction accuracy was more variable: training on the related germplasm had higher accuracy than the unrelated panel (0.14–0.16 and 0.05–0.07, respectively), but variability between families was not easily predicted by parent relatedness, segregation of a locus detected by a genome-wide association study in the panel, or other characteristics. When using other families as training populations, prediction accuracies were comparable to the related germplasm panel (0.11–0.23), and families that had half-sib families in the training set had higher prediction accuracy than those that did not. Overall, this work provides an example of genomic prediction of family means and within biparental families for an important nutritional trait and suggests that using related germplasm panels as training populations can be effective.

Integrative multi‐omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water

Abstract

Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: “avoidance” by efficient sodium and chloride exclusion at the roots, and “acclimation” by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance.

Understanding the salt overly sensitive pathway in Prunus: Identification and characterization of NHX, CIPK, and CBL genes

Abstract

Salinity is a major abiotic stress factor that can significantly impact crop growth, and productivity. In response to salt stress, the plant Salt Overly Sensitive (SOS) signaling pathway regulates the homeostasis of intracellular sodium ion concentration. The SOS1, SOS2, and SOS3 genes play critical roles in the SOS pathway, which belongs to the members of Na+/H+ exchanger (NHX), CBL-interacting protein kinase (CIPK), and calcineurin B-like (CBL) gene families, respectively. In this study, we performed genome-wide identifications and phylogenetic analyses of NHX, CIPK, and CBL genes in six Rosaceae species: Prunus persica, Prunus dulcis, Prunus mume, Prunus armeniaca, Pyrus ussuriensis × Pyrus communis, and Rosa chinensis. NHX, CIPK, and CBL genes of Arabidopsis thaliana were used as controls for phylogenetic analyses. Our analysis revealed the lineage-specific and adaptive evolutions of Rosaceae genes. Our observations indicated the existence of two primary classes of CIPK genes: those that are intron-rich and those that are intron-less. Intron-rich CIPKs in Rosaceae and Arabidopsis can be traced back to algae CIPKs and CIPKs found in early plants, suggesting that intron-less CIPKs evolved from their intron-rich counterparts. This study identified one gene for each member of the SOS signaling pathway in P. persica: PpSOS1, PpSOS2, and PpSOS3. Gene expression analyses indicated that all three genes of P. persica were expressed in roots and leaves. Yeast two-hybrid-based protein–protein interaction analyses revealed a direct interaction between PpSOS3 and PpSOS2; and between PpSOS2 and PpSOS1C-terminus region. Our findings indicate that the SOS signaling pathway is highly conserved in P. persica.

Mineral nutrients in plants under changing environments: A road to future food and nutrition security

Abstract

Plant nutrition is an important aspect that contributes significantly to sustainable agriculture, whereas minerals enrichment in edible source implies global human health; hence, both strategies need to be bridged to ensure “One Health” strategies. Abiotic stress-induced nutritional imbalance impairs plant growth. In this context, we discuss the molecular mechanisms related to the readjustment of nutrient pools for sustained plant growth under harsh conditions, and channeling the minerals to edible source (seeds) to address future nutritional security. This review particularly highlights interventions on (i) the physiological and molecular responses of mineral nutrients in crop plants under stressful environments; (ii) the deployment of breeding and biotechnological strategies for the optimization of nutrient acquisition, their transport, and distribution in plants under changing environments. Furthermore, the present review also infers the recent advancements in breeding and biotechnology-based biofortification approaches for nutrient enhancement in crop plants to optimize yield and grain mineral concentrations under control and stress-prone environments to address food and nutritional security.

What plant breeding may (and may not) look like in 2050?

Abstract

At the turn of 2000 many authors envisioned future plant breeding. Twenty years after, which of those authors’ visions became reality or not, and which ones may become so in the years to come. After two decades of debates, climate change is a “certainty,” food systems shifted from maximizing farm production to reducing environmental impact, and hopes placed into GMOs are mitigated by their low appreciation by consumers. We revise herein how plant breeding may raise or reduce genetic gains based on the breeder's equation. “Accuracy of Selection” has significantly improved by many experimental-scale field and laboratory implements, but also by vulgarizing statistical models, and integrating DNA markers into selection. Pre-breeding has really promoted the increase of useful “Genetic Variance.” Shortening “Recycling Time” has seen great progression, to the point that achieving a denominator equal to “1” is becoming a possibility. Maintaining high “Selection Intensity” remains the biggest challenge, since adding any technology results in a higher cost per progeny, despite the steady reduction in cost per datapoint. Furthermore, the concepts of variety and seed enterprise might change with the advent of cheaper genomic tools to monitor their use and the promotion of participatory or citizen science. The technological and societal changes influence the new generation of plant breeders, moving them further away from field work, emphasizing instead the use of genomic-based selection methods relying on big data. We envisage what skills plant breeders of tomorrow might need to address challenges, and whether their time in the field may dwindle.

A review of plant epigenetics through the lens of almond

Abstract

While genomes were originally seen as static entities that stably held and organized genetic information, recent advances in sequencing have uncovered the dynamic nature of the genome. New conceptualizations of the genome include complex relationships between the environment and gene expression that must be maintained, regulated, and sometimes even transmitted over generations. The discovery of epigenetic mechanisms has allowed researchers to understand how traits like phenology, plasticity, and fitness can be altered without changing the underlying deoxyribonucleic acid sequence. While many discoveries were first made in animal systems, plants provide a particularly complex set of epigenetic mechanisms due to unique aspects of their biology and interactions with human selective breeding and cultivation. In the plant kingdom, annual plants have received the most attention; however, perennial plants endure and respond to their environment and human management in distinct ways. Perennials include crops such as almond, for which epigenetic effects have long been linked to phenomena and even considered relevant for breeding. Recent discoveries have elucidated epigenetic phenomena that influence traits such as dormancy and self-compatibility, as well as disorders like noninfectious bud failure, which are known to be triggered by the environment and influenced by inherent aspects of the plant. Thus, epigenetics represents fertile ground to further understand almond biology and production and optimize its breeding. Here, we provide our current understanding of epigenetic regulation in plants and use almond as an example of how advances in epigenetics research can be used to understand biological fitness and agricultural performance in crop plants.

Climate change impacts on crop breeding: Targeting interacting biotic and abiotic stresses for wheat improvement

Abstract

Wheat (Triticum aestivum L.) as a staple crop is closely interwoven into the development of modern society. Its influence on culture and economic development is global. Recent instability in wheat markets has demonstrated its importance in guaranteeing food security across national borders. Climate change threatens food security as it interacts with a multitude of factors impacting wheat production. The challenge needs to be addressed with a multidisciplinary perspective delivered across research, private, and government sectors. Many experimental studies have identified the major biotic and abiotic stresses impacting wheat production, but fewer have addressed the combinations of stresses that occur simultaneously or sequentially during the wheat growth cycle. Here, we argue that biotic and abiotic stress interactions, and the genetics and genomics underlying them, have been insufficiently addressed by the crop science community. We propose this as a reason for the limited transfer of practical and feasible climate adaptation knowledge from research projects into routine farming practice. To address this gap, we propose that novel methodology integration can align large volumes of data available from crop breeding programs with increasingly cheaper omics tools to predict wheat performance under different climate change scenarios. Underlying this is our proposal that breeders design and deliver future wheat ideotypes based on new or enhanced understanding of the genetic and physiological processes that are triggered when wheat is subjected to combinations of stresses. By defining this to a trait and/or genetic level, new insights can be made for yield improvement under future climate conditions.