Mutant crtRB1 gene negates the unfavourable effects of opaque2 gene on germination and seed vigour among shrunken2-based biofortified sweet corn genotypes
The physiology and anatomy study in leaves of Saragolla and Svevo wheat cultivars under polyethylene glycol-simulated drought stress
Genome‐wide analysis of PvMADS in common bean and functional characterization of PvMADS31 in Arabidopsis thaliana as a player in abiotic stress responses
Abstract
Changing climatic conditions with rising temperatures and altered precipitation patterns pose significant challenges to agricultural productivity, particularly for common bean crops. Transcription factors (TFs) are crucial regulators that can mitigate the impact of biotic and abiotic stresses on crop production. The MADS-box TFs family has been implicated in various plant physiological processes, including stress-responsive mechanisms. However, their role in common bean and their response to stressful conditions remain poorly understood. Here, we identified 35 MADS-box gene family members in common bean, with conserved MADS-box domains and other functional domains. Gene duplication events were observed, suggesting the significance of duplication in the evolutionary development of gene families. The analysis of promoter regions revealed diverse elements, including stress-responsive elements, indicating their potential involvement in stress responses. Notably, PvMADS31, a member of the PvMADS-box gene family, demonstrated rapid upregulation under various abiotic stress conditions, including NaCl, polyethylene glycol, drought, and abscisic acid (ABA) treatments. Transgenic plants overexpressing PvMADS31 displayed enhanced lateral root development, root elongation, and seed germination under stress conditions. Furthermore, PvMADS31 overexpression in Arabidopsis resulted in improved drought tolerance, likely attributed to the enhanced scavenging of ROS and increased proline accumulation. These findings suggest that PvMADS31 might play a crucial role in modulating seed germination, root development, and stress responses, potentially through its involvement in auxin and ABA signaling pathways. Overall, this study provides valuable insights into the potential roles of PvMADS-box genes in abiotic stress responses in common bean, offering prospects for crop improvement strategies to enhance resilience under changing environmental conditions.
Cryptic sexual reproduction in an emerging Eucalyptus shoot and foliar pathogen
By using microsatellite and mating-type markers, we elucidated the population biology and likely mode of reproduction of Elsinoe necatrix causing the destructive Eucalyptus scab and shoot malformation epidemic in North Sumatra, Indonesia.
Abstract
Eucalyptus scab and shoot malformation is an emerging disease and a serious threat to the global plantation forestry industry. The disease appeared in North Sumatra (Indonesia) in the early 2010s and the causal agent was recently described as a novel species, Elsinoe necatrix. Nothing is known regarding its possible origin or why it emerged rapidly to cause a serious local epidemic. To investigate its population biology, we developed 15 polymorphic microsatellite markers as well as mating-type markers using genome sequences for two E. necatrix isolates. Isolates of the pathogen were collected from different host varieties at four locations in the Lake Toba region of North Sumatra and characterized using these markers. A high level of genotypic diversity was observed for all populations with little to no genetic differentiation between sampling areas. Discriminant analysis of principal components, genotype networks and analysis of molecular variance all showed a lack of population structure and a high level of gene flow among sampling regions. Mating-type ratios and linkage disequilibrium analyses suggest that sexual recombination is likely to be occurring, although a sexual state has not been found for the pathogen. The results of this study highlight the fact that new genotypes of E. necatrix, probably arising from cryptic sexual recombination, will challenge efforts to manage the disease, and that breeding and selection for tolerance will require substantial host genetic diversity.
Assembly and comparative analysis of the complete mitochondrial genome of Pinellia ternata
Simulations of multiple breeding strategy scenarios in common bean for assessing genomic selection accuracy and model updating
Abstract
The aim of this study was to evaluate the accuracy of the ridge regression best linear unbiased prediction model across different traits, parent population sizes, and breeding strategies when estimating breeding values in common bean (Phaseolus vulgaris). Genomic selection was implemented to make selections within a breeding cycle and compared across five different breeding strategies (single seed descent, mass selection, pedigree method, modified pedigree method, and bulk breeding) following 10 breeding cycles. The model was trained on a simulated population of recombinant inbreds genotyped for 1010 single nucleotide polymorphism markers including 38 known quantitative trait loci identified in the literature. These QTL included 11 for seed yield, eight for white mold disease incidence, and 19 for days to flowering. Simulation results revealed that realized accuracies fluctuate depending on the factors investigated: trait genetic architecture, breeding strategy, and the number of initial parents used to begin the first breeding cycle. Trait architecture and breeding strategy appeared to have a larger impact on accuracy than the initial number of parents. Generally, maximum accuracies (in terms of the correlation between true and estimated breeding value) were consistently achieved under a mass selection strategy, pedigree method, and single seed descent method depending on the simulation parameters being tested. This study also investigated model updating, which involves retraining the prediction model with a new set of genotypes and phenotypes that have a closer relation to the population being tested. While it has been repeatedly shown that model updating generally improves prediction accuracy, it benefited some breeding strategies more than others. For low heritability traits (e.g., yield), conventional phenotype-based selection methods showed consistent rates of genetic gain, but genetic gain under genomic selection reached a plateau after fewer cycles. This plateauing is likely a cause of faster fixation of alleles and a diminishing of genetic variance when selections are made based on estimated breeding value as opposed to phenotype.
Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture
Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review
Comparison of four inoculation methods and three Fusarium species for phenotyping stalk rot resistance among 22 maize hybrids (Zea mays)
Needle injection of Fusarium graminearum and assessment of internode proportion are the most promising methods in phenotyping maize genotypes for Fusarium stalk rot resistance in central Europe.
Abstract
Fusarium stalk rot (FSR) is among the most destructive maize diseases causing significant global yield losses. Resistance of 22 maize hybrids to FSR was tested using four inoculation methods in each of two locations in 2021 and 2022. The inoculation methods included needle injection (NI), toothpick method (TM), stick method (SM) and mycelium method (MM), and the inoculated fungi were Fusarium culmorum, F. graminearum and F. temperatum. NI displayed the highest FSR infection among maize hybrids followed by TM and SM. MM showed the least infection. From five stalk rot-related traits, full-length infection and internode proportion, that is, the percentage of visible infection summed up over internodes, captured most of the genetic variation. The latter was the trait with the highest heritability (0.90). No significant (p > 0.05) genotype × method and genotype × fungus interaction variances were observed for any traits. For F. graminearum inoculation, NI showed the highest internode proportion followed by TM and SM, with F. culmorum responding in a similar way. For F. temperatum, TM outranked all other methods. F. graminearum was the most aggressive fungal pathogen compared to F. culmorum and F. temperatum. For phenotyping maize lines with varying degrees of resistance to FSR, we recommend needle injection and internode proportion.