Scientific Reports, Published online: 09 October 2023; doi:10.1038/s41598-023-44207-2
The prediction of sagittal chin point relapse following two-jaw surgery using machine learningIsolation of Extracellular Vesicles from Phloem Sap by Size Exclusion Chromatography
Abstract
Extracellular vesicles (EVs) are nanoparticles that are released by cells and participate in the transfer of information. It is now known that EVs from mammalian cells are involved in different physiological and pathophysiological processes (antigen presentation, tissue regeneration, cancer, inflammation, diabetes, etc.). In the past few years, several studies on plants have demonstrated that EVs are also key tools for plant intercellular and cross-kingdom communications, suggesting that these nanostructures may contribute to distinct aspects of plant physiology such as development, defense, reproduction, symbiotic relationships, etc. These findings are challenging the traditional view of signaling in plants.
EVs are probably involved in the phloem's transport system, since this vascular tissue plays a crucial role in translocating nutrients, defensive compounds, and informational signals throughout the plant. The collection of phloem is experimentally challenging because sap is under high turgor pressure inside the sieve elements, which have a small diameter and are hidden within the plant organs. The goals of this work are to develop new protocols that allow us to detect EVs for the first time in the phloem of the plants, and to isolate these nanovesicles for in-depth analysis and characterization.
Our protocols describe two distinct methods to collect the phloem sap from rice and melon. The first method (Basic Protocol 1) involves ‘Aphid stylectomy by radiofrequency microcautery’ using rice plants and the aphid Sitobion avenae. This is considered the least invasive method for collecting phloem sap. The second method, ‘Stem incision’, involves cutting the stem of melon plants for collecting the exuded sap. Phloem sap EVs are then isolated by size exclusion chromatography. The results obtained in this study represent the first report on typical EVs isolated from in vivo–collected phloem sap. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Basic Protocol 1: Isolation of EVs from phloem sap: Aphid stylectomy by radiofrequency microcautery
Basic Protocol 2: Isolation of EVs from phloem sap: Stem incision method
Quantitative Analysis of Cellular Morphology During In Vitro Decidualization
Abstract
Decidualization is a differentiation process involving shape reorganization from a fibroblast to an epithelioid-like appearance characteristic of endometrial stromal cells. For the study of in vitro decidualization, one needs to check that the cells have undergone this process effectively. Verification is usually done by analyzing the expression of decidual markers, but changes in morphology are a more comprehensive feature. However, morphological specificities (i.e., flatness) of endometrial cells prevent the use of existing automated tools. A simple and accurate methodology was developed to quantify the phenotypic changes that occur in an in vitro decidualization system. This approach analyzes cell circularity directly from light microscopy images to follow the effects of progesterone or progestin R5020 in combination with estradiol (E2) and cAMP in inducing the decidualization of human endometrial cells. A statistical model to detect the differences in the kinetics of decidualization of the two hormonal stimuli before all the cell population acquire the decidual phenotype was implemented. It was found that statistical differences in morphology between decidualized and control cells could be detected 2 days after the treatments. Here we detail the model applied, scripts, and input files in order to provide a useful, practical, and low-cost tool to evaluate morphological aspects of endometrial stromal differentiation. This method allows the verification of the effectiveness of the decidualization process of the stromal endometrial cells without having to use cell replicates, as other methods such as immunofluorescence and RT-qPCR assays require. Consequently, this approach can follow the kinetics of a living single replicate throughout the experiment. © 2023 Wiley Periodicals LLC.
Basic Protocol 1: Cell circularity quantification of human stromal endometrial cells using ImageJ
Basic Protocol 2: Statistical analysis of cell circularity of human stromal endometrial cells
Facilitating the Molecular Diagnosis of Rare Genetic Disorders Through Facial Phenotypic Scores
Abstract
With recent advances in computer vision, many applications based on artificial intelligence have been developed to facilitate the diagnosis of rare genetic disorders through the analysis of patients’ two-dimensional frontal images. Some of these have been implemented on online platforms with user-friendly interfaces and provide facial analysis services, such as Face2Gene. However, users cannot run the facial analysis processes in house because the training data and the trained models are unavailable. This article therefore provides an introduction, designed for users with programming backgrounds, to the use of the open-source GestaltMatcher approach to run facial analysis in their local environment. The Basic Protocol provides detailed instructions for applying for access to the trained models and then performing facial analysis to obtain a prediction score for each of the 595 genes in the GestaltMatcher Database. The prediction results can then be used to narrow down the search space of disease-causing mutations or further connect with a variant-prioritization pipeline. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Basic Protocol: Using the open-source GestaltMatcher approach to perform facial analysis
THE ESSENTIAL ROLE OF CALCIUM ION IN POLLEN GERMINATION AND POLLEN TUBE GROWTH
Genetic architecture of soybean tolerance to off-target dicamba
The adoption of dicamba-tolerant (DT) soybean in the United States resulted in extensive off-target dicamba damage to non-DT vegetation across soybean-producing states. Although soybeans are highly sensitive to dicamba, the intensity of observed symptoms and yield losses are affected by the genetic background of genotypes. Thus, the objective of this study was to detect novel marker-trait associations and expand on previously identified genomic regions related to soybean response to off-target dicamba. A total of 551 non-DT advanced breeding lines derived from 232 unique bi-parental populations were phenotyped for off-target dicamba across nine environments for three years. Breeding lines were genotyped using the Illumina Infinium BARCSoySNP6K BeadChip. Filtered SNPs were included as predictors in Random Forest (RF) and Support Vector Machine (SVM) models in a forward stepwise selection loop to identify the combination of SNPs yielding the highest classification accuracy. Both RF and SVM models yielded high classification accuracies (0.76 and 0.79, respectively) with minor extreme misclassifications (observed tolerant predicted as susceptible, and vice-versa). Eight genomic regions associated with off-target dicamba tolerance were identified on chromosomes 6 [Linkage Group (LG) C2], 8 (LG A2), 9 (LG K), 10 (LG O), and 19 (LG L). Although the genetic architecture of tolerance is complex, high classification accuracies were obtained when including the major effect SNP identified on chromosome 6 as the sole predictor. In addition, candidate genes with annotated functions associated with phases II (conjugation of hydroxylated herbicides to endogenous sugar molecules) and III (transportation of herbicide conjugates into the vacuole) of herbicide detoxification in plants were co-localized with significant markers within each genomic region. Genomic prediction models, as reported in this study, can greatly facilitate the identification of genotypes with superior tolerance to off-target dicamba.
Agronomic and hormonal approaches for enhancing flowering intensity in white Guinea yam (Dioscorea rotundata Poir.)
Developing novel white Guinea yam (
Transcriptome and metabolome analyses of anthocyanin biosynthesis in post-harvest fruits of a full red-type kiwifruit (Actinidia arguta) ‘Jinhongguan’
Anthocyanin is the main component of pigment in red-fleshed kiwifruit. ‘Jinhongguan’ is a new cultivar of
The role of microbial interactions on rhizobial fitness
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.