Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae

Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae

Production of a postbiotic extract using sugarcane straw as substrate of fermentation process and Saccharomyces cerevisiae as fermentative microorganism. The extract obtained showed antioxidant and anti-inflammatory activities in skin cells, as well as beneficial for skin microbiota modulation applications. This sustainable produced postbiotic extract can be used for cosmetic and skincare ingredients development


Abstract

Postbiotics are defined as a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host.” They can be produced by fermentation, using culture media with glucose (carbon source), and lactic acid bacteria of the genus Lactobacillus, and/or yeast, mainly Saccharomyces cerevisiae as fermentative microorganisms. Postbiotics comprise different metabolites, and have important biological properties (antioxidant, anti-inflammatory, etc.), thus their cosmetic application should be considered. During this work, the postbiotics production was carried out by fermentation with sugarcane straw, as a source of carbon and phenolic compounds, and as a sustainable process to obtain bioactive extracts. For the production of postbiotics, a saccharification process was carried out with cellulase at 55°C for 24 h. Fermentation was performed sequentially after saccharification at 30°C, for 72 h, using S. cerevisiae. The cells-free extract was characterized regarding its composition, antioxidant activity, and skincare potential. Its use was safe at concentrations below ~20 mg mL−1 (extract's dry weight in deionized water) for keratinocytes and ~ 7.5 mg mL−1 for fibroblasts. It showed antioxidant activity, with ABTS IC50 of 1.88 mg mL−1, and inhibited elastase and tyrosinase activities by 83.4% and 42.4%, respectively, at the maximum concentration tested (20 mg mL−1). In addition, it promoted the production of cytokeratin 14, and demonstrated anti-inflammatory activity at a concentration of 10 mg mL−1. In the skin microbiota of human volunteers, the extract inhibited Cutibacterium acnes and the Malassezia genus. Shortly, postbiotics were successfully produced using sugarcane straw, and showed bioactive properties that potentiate their use in cosmetic/skincare products.

Promotion of degradative autophagy by 6‐bromoindirubin‐3′‐oxime attenuates neuropathy

Promotion of degradative autophagy by 6-bromoindirubin-3′-oxime attenuates neuropathy

Tunicamycin increases peripheral neuropathy subsequently treatment with 6-BIO reduces peripheral neuropathy and increases degradative autophagy and reduces secretory autophagy.


Abstract

Damage to the central or peripheral nervous system causes neuropathic pain. Endoplasmic reticulum (ER) stress plays a role in peripheral neuropathy. Increase in ER stress is seen in diabetic neuropathy. Inducers of ER stress also give rise to peripheral neuropathy. ER stress leads to the formation of autophagosome but as their degradation is also stalled during ER stress accumulation of autophagosomes is seen. Accumulation of autophagosomes has deleterious effects on cells. In the present study, we show that treatment with tunicamycin (TM) (ER stress inducer) in mice leads to peripheral neuropathy as assessed by Von Frey and Hot plate method. Administration of a promoter of autophagy viz. 6-bromoindirubin-3′-oxime (6-BIO) subsequent to ER stress induced by TM exhibits a decrease in peripheral neuropathy. 6-BIO was also effective in reducing diabetic peripheral neuropathy. To understand the type of autophagy activated, SH-SY5Y cells were treated with 6-BIO after TM treatment. Levels of cathepsin D (CTSD), a marker for degradative autophagy was higher in cells treated with 6-BIO after TM treatment compared to only TM-treated SH-SY5Y cells while levels of Rab8A,—a marker for secretory autophagy was reduced. Furthermore, in parallel during ER stress secretory, we noted increased levels of lysozyme in autophagosomes destined for secretion. Cells treated with 6-BIO showed reduction of lysozyme in secretory autophagosomes. This shows that 6-BIO increased degradative autophagy and reduced the secretory autophagy. 6-BIO also reduced the caspase-3 activity in 6-BIO-treated cells. Thus, 6-BIO reduced neuropathy in animals by activating degradative autophagy and reducing the secretory autophagy.

Stachydrine, N‐acetylornithine and trimethylamine N‐oxide levels as candidate milk biomarkers of maternal consumption of an obesogenic diet during lactation

Stachydrine, N-acetylornithine and trimethylamine N-oxide levels as candidate milk biomarkers of maternal consumption of an obesogenic diet during lactation

Reverting to a healthy maternal diet during lactation normalizes the altered milk metabolome found in obese rats. Stachydrine, N-acetylornithine and TMAO levels are proposed as candidate biomarkers of maternal consumption of an obesogenic diet during lactation.


Abstract

We aimed to evaluate whether improving maternal diet during lactation in diet-induced obese rats reverts the impact of western diet (WD) consumption on the metabolome of milk and offspring plasma, as well as to identify potential biomarkers of these conditions. Three groups of dams were followed: control-dams (CON-dams), fed with standard diet (SD); WD-dams, fed with WD prior and during gestation and lactation; and reversion-dams (REV-dams), fed as WD-dams but moved to SD during lactation. Metabolomic analysis was performed in milk at lactation days 5, 10, and 15, and in plasma from their male and female offspring at postnatal day 15. Milk of WD-dams presented, throughout lactation and compared to CON-dams, altered profiles of amino acids and of the carnitine pool, accompanied by changes in other polar metabolites, being stachydrine, N-acetylornithine, and trimethylamine N-oxide the most relevant and discriminatory metabolites between groups. The plasma metabolome profile was also altered in the offspring of WD-dams in a sex-dependent manner, and stachydrine, ergothioneine and the acylcarnitine C12:1 appeared as the top three most discriminating metabolites in both sexes. Metabolomic changes were largely normalized to control levels both in the milk of REV-dams and in the plasma of their offspring. We have identified a set of polar metabolites in maternal milk and in the plasma of the offspring whose alterations may indicate maternal intake of an unbalanced diet during gestation and lactation. Levels of these metabolites may also reflect the beneficial effects of implementing a healthier diet during lactation.

Morphological and molecular characterization of Fusarium incarnatum as a causal disease agent of pepper (Capsicum annuum) fruit rot

Abstract

Chilli pepper (Capsicum annuum L.) is one of the most important commercially cultivated and consumed vegetables in Turkey. During a disease survey, typical symptoms of fruit rot were observed on mature chilli pepper fruits in several surveyed fields and on dried pepper fruits obtained from local retailers/bazaars in Hatay Province, Turkey. Disease incidence varied from 15 to 45% of the plants in the inspected fields. Following standard isolation procedures, 40 fungal isolates were isolated, purified and single-spore cultures were obtained from surface-disinfected, rotted dried pepper tissue. Of these isolates, six fungal isolates with dense, cottony white aerial mycelia that became beige with age, were isolated on a potato sucrose agar. All isolates were found to be pathogenic on artificially inoculated chilli pepper fruit. Based on morphological characteristics, the isolates were initially identified as Fusarium incarnatum (Desm.) Sacc. 1886. Morphological identification of F. incarnatum isolates was further confirmed by MALDI-TOF and molecular analyses using the sequences of the i nternal t ranscribed s pacer (ITS), partial t ranslation e longation f actor-1α (TEF-1α) and second largest subunit of RNA polymerase II (RPB2) loci. Phylogenetic analysis based on ITS, TEF-1α, RPB2 and concatenation of TEF-1α, RPB2 loci sequences performed with several isolates of Fusarium spp. confirmed that representative fungal isolates (MKUZF1 and MKUZF4) belong to F. incarnatum. To our knowledge, this is the first report of F. incarnatum causing fruit rot in chilli peppers grown in Turkey.

Analyzing genomic variation in cultivated pumpkins and identification of candidate genes controlling seed traits

Abstract

Pumpkins are important vegetable crops widely grown worldwide, and seeds are considered a popular nutraceutical food and an excellent source of protein, oil, and vitamins. Seed size is one of the most important targets for commercial breeding in Cucurbita species; studies have shown that pumpkin seed size variation has a similar trend with fruit size, shape, and seed yield. However, few studies have been conducted to identify genetic loci controlling seed-related traits in cultivated pumpkins. This study analyzed the genomic characteristics of pumpkin breeding materials of 321 Cucurbita accessions collected worldwide, including Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo, using extensive single nucleotide polymorphisms obtained from the genotyping-by-sequencing method, significant genetic variations were identified within and between Cucurbita species. Four major cultivar fruit types were further revealed in C. moschata species, and significant differentiation patterns were detected in several chromosomal regions. A total of 15 significant loci associated with pumpkin seed traits were mapped through a genome-wide association approach; 32 genes previously reported to be associated with seed size regulation in Arabidopsis and Oryza sativa were located in the intervals defined by linkage disequilibrium. Through this study, we gained a deep understanding of the genomic variation distribution across Cucurbita species. The available genetic resources and the associated genetic contents could be used in commercial pumpkin breeding and will facilitate molecular marker-assisted selection in pumpkin seed trait improvement.

Genetic diversity and resistance assessment among maize genotypes against banded leaf and sheath blight (caused by Rhizoctonia solani f. sp. sasakii) utilizing SSR markers

Abstract

A field investigation was carried out during the consecutive kharif seasons of 2021 and 2022 to assess the resistance response of 38 maize genotypes against banded leaf and sheath bight (BLSB). The trials were conducted at CCS Haryana Agricultural University, Regional Research Station, Karnal (India) under artificial epiphytotic conditions. Throughout both seasons, six genotypes (HKI 163, HKI 193-2, HKI 488, IQPMH-18-2, HKI 194-7 and HKI 1128) exhibited resistant reactions, one genotype (HM 8) showed susceptible reaction, whereas 19 genotypes showed moderately resistant response to BLSB. To analyse molecular aspects of BLSB resistance, genomic DNA was extracted and PCR amplification was performed using 22 SSR markers. Ten SSR markers (bnlg238, bnlg161, bnlg127, bnlg339, bnlg615, bnlg1272, phi077, phi080, phi035 and umc1275) revealed distinct banding patterns in resistant and susceptible genotypes. Among these, marker bnlg339 exhibited a band size of 120 bp across 14 genotypes, with six (HKI 163, HKI 193-2, HQPM 5, IQPMH-18-2, HKI 194-7 and HKI 1128) classified as resistant and eight (HKI 193-1, HKI 1657, HKI 1378, HPQM 1, HKI 1659, HPQM 2, T Bio 259 ER and HKI 191-2-5) as moderately resistant, resembling the amplified profile of the resistant check genotype (HKI 163). Similarly, the markers phi080 and bnlg1272 exhibited differential amplified profile of approximately 150 bp and 240 bp, respectively, in 10 (five resistant and five moderately resistant) and 12 (four resistant and eight moderately resistant) maize genotypes throughout the study. The percentage of polymorphism for the SSR markers varied from 0 to 100%, with an average value of 95.45% per primer among all genotypes. The identification of resistant and moderately resistant genotypes and characterization of specific SSR markers associated with resistance offer practical tools for breeders to develop BLSB-resistant maize varieties, ultimately enhancing crop resilience and food security.

Identification and characterization of Entyloma eschscholziae, a recently introduced pathogen in Europe, and its segregate Entyloma dendromeconis sp. nov.

Identification and characterization of Entyloma eschscholziae, a recently introduced pathogen in Europe, and its segregate Entyloma dendromeconis sp. nov.

The morphology, phylogeny and species boundaries of Entyloma eschscholziae are revisited, and a new species Entyloma dendromeconis is described.


Abstract

Entyloma includes pathogenic and saprobic species that infect or colonize dicotyledonous host plants. Although most Entyloma species are known only from native areas of occurrence, some species were introduced with their host plants and spread outside their natural areas. The identification of introduced species is important for detection and management of invasive species. In this study, the morphology, phylogeny and species boundaries of Entyloma eschscholziae, recently introduced from North America to Europe, are revisited. Morphology was similar among the type and other specimens of E. eschscholziae analysed on Eschscholzia californica. Both asexual and sexual morphs were observed. The rDNA ITS1-5.8S-ITS2 sequences of the E. eschscholziae specimens from Europe and New Zealand and the environmental sequence obtained from grassland soil in California, United States, were identical. Morphological and molecular analyses confirm that the causative agents of white smut on E. californica in native (North America) and introduced (Europe, New Zealand) areas belong to the same species. DNA barcodes obtained in this study (especially ITS sequence from the designated epitype specimen) could be used to facilitate its molecular identification. Specimens on Dendromecon rigida, previously assigned to E. eschscholziae, are morphologically distinct. An attempt to obtain DNA barcode data from degraded holotype material was not successful and no more recent material is available. However, based on the morphological differences and high host specificity found in Entyloma spp., it is appropriate to describe a new species, Entyloma dendromeconis, for this smut pathogen.

Population genomics identifies genetic signatures of carrot domestication and improvement and uncovers the origin of high-carotenoid orange carrots

Nature Plants, Published online: 28 September 2023; doi:10.1038/s41477-023-01526-6

This study demonstrates that orange carrot was selected during the Renaissance period, probably in western Europe, through the selection of three recessive genes that increased the provitamin A carotenoid (α- and β-carotene) content.