Downregulation of microRNA‐326 enhances ZNF322A expression, transcriptional activity and tumorigenic effects in lung cancer

Downregulation of microRNA-326 enhances ZNF322A expression, transcriptional activity and tumorigenic effects in lung cancer

Oncogenic ZNF322A transcription factor is overexpressed in lung cancer. Downregulated miR-326 promotes ZNF322A-induced tumor growth and metastasis. This study reveals that miR-326-low/ZN322A-high profile is a biomarker to predict poor prognosis in lung cancer.


Abstract

Zinc finger protein ZNF322A is an oncogenic transcription factor. Overexpression of ZNF322A activates pro-metastasis, cancer stemness, and neo-angiogenesis-related genes to enhance lung cancer progression. However, the upstream regulator of ZNF322A is not well defined. Dysregulation of microRNAs (miRNAs) can mediate cancer cell growth, migration, and invasion to promote tumorigenesis. Here, we uncover the mechanism of miRNA-mediated transcriptional regulation in ZNF322A-driven oncogenic events. ZNF322A harbors several putative miRNA-binding sites in the 3′-untranslated region (UTR). We validated that miR-326 downregulated ZNF322A-3′-UTR luciferase activity and mRNA expression. Furthermore, miR-326 suppressed the expression of ZNF322A-driven cancer-associated genes such as cyclin D1 and alpha-adducin. Reconstitution experiments by ectopic overexpression of ZNF322A abolished miR-326-suppressed cancer cell proliferation and cell migration capacity. Moreover, miR-326 attenuated ZNF322A-induced tumor growth and lung tumor metastasis in vivo. Clinically, the expression of miR-326 negatively correlated with ZNF322A mRNA expression in surgically resected tissues from 120 non-small cell lung cancer (NSCLC) patients. Multivariate Cox regression analysis demonstrated that NSCLC patients with low miR-326/high ZNF322A profile showed poor overall survival. Our results reveal that the deregulated expression of miR-326 leads to hyperactivation of ZNF322A-driven oncogenic signaling. Targeting the miR-326/ZNF322A axis would provide new therapeutic strategies for lung cancer patients.

Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers

Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers

This comprehensive review explores the latest advancements in the screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. It discusses screening techniques, diverse synthesis strategies, and various modification approaches employed to enhance their properties. The review also highlights the broad range of biomedical applications where peptides and peptide aptamers have shown promise, including drug delivery, therapeutics, diagnostics, and biomaterials.


Abstract

Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.

Intracellular and mitochondrial proteomic analysis reveals antifungal mechanisms of borate on mango black spot pathogen Alternaria alternata

Intracellular and mitochondrial proteomic analysis reveals antifungal mechanisms of borate on mango black spot pathogen Alternaria alternata

The antifungal effect of potassium tetraborate on the proteomics of Alternaria alternata involves multiple metabolic pathways and could be used as a potential substitute for fungicides to control postharvest diseases of mango.


Abstract

Boron, in the form of potassium tetraborate, has previously been found to be effective at inhibiting mango black spot disease, caused by Alternaria alternata. However, the mechanisms involved in this inhibition are largely unknown. In this study, A. alternata was treated in vitro with potassium tetraborate at a concentration of 5–10 mM for 48 or 72 h. The intracellular and mitochondrial proteins were extracted from mycelium and separated using two-dimensional electrophoresis (2-DE). Differentially expressed proteins (DEPs) were identified using bioinformatics tools and differences between protein spots were derived from mass spectrometry (MS). Using matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-ToF-MS/MS), 96 intracellular and 56 mitochondrial DEPs were identified. The intracellular proteins identified were found to be involved in posttranslational modifications, protein turnover and chaperones, while the mitochondrial proteins were involved in electron transport chains. Our results demonstrate that various metabolic pathways are involved in the antifungal activity of boron. The differential expression of 20 genes was also verified at the mRNA level by reverse transcription-quantitative PCR. Our study suggests that borate could be used as a potential substitute for synthetic fungicides to control this postharvest disease of mango fruits.

Breeding dryland legumes for diverse needs: Using multi‐location trials and participatory variety selection to develop farmer‐preferred groundnut (Arachis hypogaea) and pigeon pea (Cajanus cajan) varieties

Abstract

Agriculture in Sub-Saharan Africa is primarily smallholder-based, employing up to 60% of the workforce and accounting for 14%–23% of GDP. The smallholders grow crops for domestic and off-farm markets, necessitating crop variety attributes for which trait mismatches may limit adoption. Indeed, improved variety adoption is varied and limited, especially for self-pollinated crops, in part due to the mismatch in characteristics of commercialised varieties. The international research community leads breeding of varieties for under-invested crops, especially legumes. These varieties are often resilient and productive, but the dynamisms in target agri-food systems may limit their relevance. Gaining a better understanding of the trait profiles that crop value chain actors consider will increase their adoption. This study combined multi-location trials and participatory variety selection (PVS) of pigeon pea and groundnut across different environments to evaluate the efficacy of both processes in the breeding of desired varieties. The present study shows improvement in the new materials regarding performance and preference by farmers. Additionally, PVS showed that men prioritised productivity and market-enhancing traits, whereas women ranked food security traits highest.

Prospects for developing allergen‐depleted food crops

Abstract

In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.

Postmeiotic irregular anther1 (PIA1) is required for anther cuticle and pollen exine development in maize (Zea mays L.)

Abstract

Male sterile lines are valuable germplasm resources for hybrid seed production in maize (Zea mays L.). The structures of the anther cuticle and pollen exine are associated with male sterility. We obtained a completely male sterile mutant (postmeiotic irregular anther1, pia1), which has closed glumes and relatively small and wilted anthers (compared with the wild-type control). Cytological analysis revealed the normal meiosis and premature tapetal degradation in pia1. Additionally, formation of the pia1 anther cuticle and Ubisch bodies was abnormal, and the pollen exine was discontinuous. Genetic analysis showed that the pia1 mutant was the result of a single recessive mutation of a nuclear gene. On the basis of fine mapping, PIA1 was mapped between the W07051 and W07124 molecular markers on chromosome 1. This region does not contain known genes associated with male sterility. Furthermore, transcriptome analysis indicated genes implicated in transmembrane transport, amino acid transmembrane transport, amino acid transport, and carboxylic acid transmembrane transport are differentially expressed in pia1 mutant anthers. The study findings suggest PIA1 is a novel regulator of anther cuticle and pollen exine development.

Genome‐wide association of dry (Tamar) date palm fruit color

Abstract

Date palm (Phoenix dactylifera) fruit (dates) are an economically and culturally significant crop in the Middle East and North Africa. There are hundreds of different commercial cultivars producing dates with distinctive shapes, colors, and sizes. Genetic studies of some date palm traits have been performed, including sex determination, sugar content, and fresh fruit color. In this study, we used genome sequences and image data of 199 dry dates (Tamar) collected from 14 countries to identify genetic loci associated with the color of this fruit stage. Here, we find loci across multiple linkage groups (LG) associated with dry fruit color phenotype. We recover both the previously identified VIRESCENS (VIR) genotype associated with fresh fruit yellow or red color and new associations with the lightness and darkness of dry fruit. This study will add resolution to our understanding of date color phenotype, especially at the most commercially important Tamar stage.