Synthesis of Inexpensive Ternary Metal Oxides by a Co‐Precipitation Method for Catalytic Oxidation of Carbon Monoxide

Synthesis of Inexpensive Ternary Metal Oxides by a Co-Precipitation Method for Catalytic Oxidation of Carbon Monoxide

The presence of three transition metal oxides in a nanocomposite made it possible to have higher catalytic CO oxidation than that of two. At higher annealing temperatures, the obtained nanocomposite had more crystallinity and thus exhibited lower activity toward the oxidation of CO. The 50 % CO conversion was observed at about 82 °C for the CuO−MnOx−Fe2O3-300 catalyst.


Abstract

By using a simple co-precipitation method, new Fe2O3-based nanocatalysts (samples) were synthesized. The samples were composites of two or three transition metal oxides, MOx (M=Fe, Mn, Co, Ni, and Cu). The average size of CuO crystallites in the composites composed of two oxide components (CuO−Fe2O3) was about 14.3 nm, while in those composed of three (CuO−MnOx−Fe2O3), the composite's phase compositions were almost in the amorphous form when annealing the sample at 300 °C. The latter sample had a specific surface area higher than that of the former, 207.9 and 142.1 g/m2, respectively, explaining its higher catalytic CO oxidation. The CO conversion over the CuO−MnOx−Fe2O3-300 catalyst (1 g of catalyst, 2600 ppm of CO concentration in air, and 1.0 L/min of gas flow rate) begins at about 40 °C; the temperature for 50 % CO conversion (t 50) is near 82 °C; and CO removal is almost complete at t 99 ≈110 °C. The activity of the optimal sample was tested in different catalytic conditions, thereby observing a high durability of 99–100 % CO conversion at 130 °C. The obtained results were derived from XRD, FTIR, BET, SEM, elemental analysis and mapping, as well as catalytic experiments.

Vanadium‐catalyzed Hydration of 2‐Cyanopyrazine to Pyrazinamide with Unique Substrate Specificity

Vanadium-catalyzed Hydration of 2-Cyanopyrazine to Pyrazinamide with Unique Substrate Specificity

The preparation of pyrazinamide via catalytic hydration of 2-cyanopyrazine is of great economic interest with high atomic economy. Vanadium-nitrogen-carbon materials were fabricated and employed for catalytic hydration of 2-cyanopyrazine with unique substrate specificity. This work expands the application of vanadium-based catalysts for nitrile hydration reactions.


Abstract

Pyrazinamide is an important medicine used for the treatment of tuberculosis(TB). The preparation of pyrazinamide via catalytic hydration of 2-cyanopyrazine is of great economic interest with high atomic economy. Heterogeneous non-precious transition metal-catalyzed hydration of nitriles under neutral reaction conditions would be rather attractive. Herein vanadium-nitrogen-carbon materials were fabricated and employed for selective hydration of nitriles using water as both the solvent and reactant. 2-Cyanopyrazine could be smoothly converted into to pyrazinamide with unique substrate specificity. Additives with different N and O atoms could significantly affect hydration of 2-cyanopyrazine due to competitive adsorption/coordination in the reaction system. This work provides a new approach for non-precious metal catalyzed hydration of nitriles.

Synthesis of Thiophene‐Substituted Ketones via Manganese‐Catalyzed Dehydrogenative Coupling Reaction

Synthesis of Thiophene-Substituted Ketones via Manganese-Catalyzed Dehydrogenative Coupling Reaction

Herein, we reports an efficient and green one-step method for synthesizing thiophene-substituted ketones from 2-thiophenemethanol and ketones via dehydrogenative coupling using manganese complexes as catalysts. Utilizing this strategy, we carried out an efficient and diverse reaction of ketones with 2-thiophenemethanol, and successfully synthesized a series of thiophene-substituted saturated ketones and α, β-unsaturated ketones in good isolated yields.


Abstract

This study reports an efficient and green one-step method for synthesizing thiophene-substituted ketones from 2-thiophenemethanol and ketones via dehydrogenative coupling using manganese complexes as catalysts. The manganese complex demonstrated a broad applicability under mild conditions and extended the range of usable substrates. Utilizing this strategy, we carried out an efficient and diverse reaction of ketones with 2-thiophenemethanol, and successfully synthesized a series of thiophene-substituted saturated ketones and α, β-unsaturated ketones in good isolated yields.

Visible‐Light‐Driven Furfural Oxidation over CuOx/Nb2O5

Visible-Light-Driven Furfural Oxidation over CuOx/Nb2O5

Research on the oxidation of furfural to maleic anhydride (MA) suffers from low efficiency, solvent corrosion, and harsh conditions. CuOx/Nb2O5 was prepared as photocatalyst to catalyze furfural oxidation to MA and 5-hydroxy-2(5H)-furanone (HF) selectively, and can absorb visible light due to the ligand to metal charge transfer (LMCT) with adsorbed furfural molecules.


Abstract

Maleic anhydride (MA) is an important polyester monomer that can be produced from oxidizing renewable furfural derived from biomass. However, MA generation from furfural requires harsh reaction conditions, and suffers from low efficiency and solvent corrosion. Herein, we design a Nb2O5 photocatalyst loaded of highly dispersed CuOx (CuOx/Nb2O5), which selectively catalyzes furfural oxidation to MA and the precursor (5-hydroxy-2(5H)-furanone, HF). Due to CuOx loading and forming a complex of ligand to metal charge transfer (LMCT) between the Nb2O5 surface and adsorbed furfural, the CuOx/Nb2O5 absorbs visible light to activate furfural though Nb2O5 has a large band-gap energy (3.2 eV). Singlet oxygen (1O2) is the key active species for C−C bond cleavage and CO generation. MA and HF is produced with a combined yield of 59 % under optimized conditions. This work provides a mild way to provide renewable maleic anhydride via oxidative C−C bond cleavage.

Do Vermicompost Applications Improve Growth Performance, Pharmaceutically Important Alkaloids, Phenolic Content, Free Radical Scavenging Potency and Defense Enzyme Activities in Summer Snowflake (Leucojum aestivum L.)?

Do Vermicompost Applications Improve Growth Performance, Pharmaceutically Important Alkaloids, Phenolic Content, Free Radical Scavenging Potency and Defense Enzyme Activities in Summer Snowflake (Leucojum aestivum L.)?


Abstract

Leucojum aestivum L. contains galanthamine and lycorine, which are two pharmaceutically valuable alkaloids. Vermicompost (VC), an organic waste product created by earthworms enhances soil quality and can improve the medicinal quality of the plant that is crucial to the pharmaceutical industry. The aim of this study was to determine the effects of four different VC concentrations (5 %, 10 %, 25 %, and 50 %) on L. aestivum growth parameters, alkaloid levels (galanthamine and lycorine), total phenol-flavonoid content, free radical scavenging potential, and defense enzyme activities (SOD and CAT) compared to control (no VC). The width, length, and fresh weight of the leaves were improved by 10 % VC treatment. The highest total phenolic content was found in the bulbs and leaves treated with 50 % VC. HPLC-DAD analysis of alkaloids showed that 10 % and 50 % VC treatments contained the most galanthamine in the bulb and leaf extracts, respectively. The application of 25 % VC was the most efficient in terms of lycorine content in both extracts. CAT activity was elevated at 10 %, 25 %, and 50 % VC. Based on the growth performance and galanthamine content of the bulbs and leaves, it can be concluded that a 10 % VC application was the most effective in the cultivation of L. aestivum.

Direct Detection of Viral Infections from Swab Samples by Probe‐Gated Silica Nanoparticle‐Based Lateral Flow Assay

Direct Detection of Viral Infections from Swab Samples by Probe-Gated Silica Nanoparticle-Based Lateral Flow Assay

Here, universal-modifiable probe-gated silica nanoparticles (SNPs) based lateral flow assay (LFA) is developed in the interest of the rapid and early detection of viral infections. The most superior advantage of the rapid assay is its utility in detecting various sides of the virus directly from the human swab samples and its adaptability to detect various types of viruses. The NSP12, NSP9, and E gene targets of CoV-2 were used as detection targets.


Abstract

Point-of-care diagnosis is crucial to control the spreading of viral infections. Here, universal-modifiable probe-gated silica nanoparticles (SNPs) based lateral flow assay (LFA) is developed in the interest of the rapid and early detection of viral infections. The most superior advantage of the rapid assay is its utility in detecting various sides of the virus directly from the human swab samples and its adaptability to detect various types of viruses. For this purpose, a high concentration of fluorescein and rhodamine B as a reporting material was loaded into SNPs with excellent loading capacity and measured using standard curve, 4.19 μmol ⋅ g−1 and 1.23 μmol ⋅ g−1, respectively. As a model organism, severe acute respiratory syndrome coronavirus-2 (CoV-2) infections were selected by targeting its nonstructural (NSP9, NSP12) and envelope (E) genes as target sites of the virus. We showed that NSP12-gated SNPs-based LFA significantly outperformed detection of viral infection in 15 minutes from 0.73 pg ⋅ mL−1 synthetic viral solution and with a dilution of 1 : 103 of unprocessed human samples with an increasing test line intensity compared to steady state (n=12). Compared to the RT-qPCR method, the sensitivity, specificity, and accuracy of NSP12-gated SNPs were calculated as 100 %, 83 %, and 92 %, respectively. Finally, this modifiable nanoparticle system is a high-performance sensing technique that could take advantage of upcoming point-of-care testing markets for viral infection detections.

Mikania micrantha Kunth: An Ethnopharmacological Treasure Trove of Therapeutic Potential

Mikania micrantha Kunth: An Ethnopharmacological Treasure Trove of Therapeutic Potential


Abstract

Mikania micrantha is utilized as a therapeutic for the treatment of various human ailments including insect bites, rashes and itches of skin, chicken pox, healing of sores and wounds, colds and fever, nausea, jaundice, rheumatism, and respiratory ailments. This study aimed at summarizing the traditional uses, phytochemical profile, and biological activities of M. micrantha based on obtainable information screened from different databases. An up-to-date search was performed on M. micrantha in PubMed, Science Direct, clinicaltrials.gov, and Google Scholar databases with specific keywords. No language restrictions were imposed. Published articles, theses, seminar/conference papers, abstracts, and books on ethnobotany, phytochemistry and pharmacological evidence were considered. Based on the inclusion criteria, this study includes 53 published records from the above-mentioned databases. The results suggest that fresh leaves and whole plant are frequently used in folk medicine. The plant contains more than 150 different phytochemicals under the following groups: essential oils, phenolics and flavonoids, terpenes, terpene lactones, glycosides, and sulfated flavonoids. It contains carbohydrates and micronutrients including vitamins and major and trace minerals. M. micrantha possesses antioxidant, anti-inflammatory, anti-microbial, anti-dermatophytic, anti-protozoal, anthelmintic, cytotoxic, anxiolytic, anti-diabetic, lipid-lowering and antidiabetic, spasmolytic, memory-enhancing, wound-healing, anti-aging, and thrombolytic activities. No clinical studies have been reported to date. M. micrantha might be one of the potential sources of phytotherapeutic compounds against diverse ailments in humans. Studies are required to confirm its safety profile in experimental animals prior to initiating clinical trials. Moreover, adequate investigation is also crucial to clarify exact mechanism of action for each biological effect.

Exploring the Substrate Switch Motif of Aromatic Ammonia Lyases

Exploring the Substrate Switch Motif of Aromatic Ammonia Lyases

Using a bioinformatic approach, we identified novel substrate switch motifs of aromatic ammonia lyases. These alternative amino acids were introduced into a tyrosine ammonia lyase (TAL rpc ). The characterization of these enzyme variants revealed a significant (up to 20-fold) improvement in the activity for phenylalanine. A computational analysis could explain these experimental results.


Abstract

Aromatic ammonia lyases (AALs) are important enzymes for biocatalysis as they enable the asymmetric synthesis of chiral l-α-amino acids from the corresponding α,β-unsaturated precursors. AALs have very similar protein structures and active site pockets but exhibit strict substrate specificity towards tyrosine, phenylalanine, or histidine. Herein, through systematic bioinformatics and structural analysis, we discovered eight new motifs of amino acid residues in AALs. After introducing them – as well as four already known motifs – into different AALs, we learned that altering the substrate specificity by engineering the substrate switch motif in phenylalanine ammonia lyases (PALs), phenylalanine/tyrosine ammonia lyases (PTALs), and tyrosine ammonia lyases (TALs) was only partially successful. However, we discovered that three previously unknown residue combinations introduced a substrate switch from tyrosine to phenylalanine in TAL, which was converted up to 20-fold better compared to the wild-type TAL enzyme.

Flower‐like Fe(OH)3 as sulfur hosts for high‐performance lithium–sulfur batteries

Lithium–sulfur batteries are considered one of the next generation potential candidates for electrochemical energy storage devices owing to their high energy density. However, their practical application presents several challenges that need to be addressed. In this study, a flower-like Fe(OH)3 was obtained using a simple and environmentally friendly one-step injection method, intended to be used as sulfur host in lithium–sulfur batteries. The polar hydroxyl groups in Fe(OH)3 capture free polysulphides in the electrolyte via chemisorption and the unique structure of the material physically entraps polysulphides, thus preventing the shuttle effect. Benefiting from functional group and spatial shape advantages, the resultant S@FH electrode yielded an initial capacity of 1187.6 mAh g−1 at 0.1 C. When the batteries are tested for 100 cycles,the reversible capacity remained at 635.2 mAh g−1 and the coulomb efficiency was nearly 100%.