The effect of steric hindrances in tertiary amine and solvent polarity on the regioselectivity and kinetics of the reaction of epichlorohydrin with acetic acid were investigated. Correlations between the reaction rate and the parameters of nucleophilicity and structure of amines as well as the polarity of the solvent were established. The regioselectivity of the reaction was studied by 1H NMR spectroscopy by the ratio of regioisomeric reaction products.
Abstract
The asymmetric oxirane ring-opening reaction leading to the formation of regioisomeric chlorohydrin esters was studied in the reaction series “acetic acid–epichlorohydrin–tetrahydrofuran (nitrobenzene)–trialkylamine” by kinetic methods and FT-IR spectroscopy. The effect of solvent polarity and the structure of tertiary amines on the regioselectivity and reaction rate were studied. Tertiary amines with comparable basicity but different nucleophilicity and spatial structure were chosen as catalysts. It was shown that in solvents of different polarity, the components of the initial reaction system are present both as hydrogen-bonded complexes and as individual substances. The reaction orders with respect to acid and amine in solvents of different polarity were established. Correlations between the reaction rate and the parameters of nucleophilicity and structure of amines as well as the polarity of the solvent were established. The regioselectivity of the reaction was studied by 1H NMR spectroscopy using the ratio of regioisomeric reaction products. It was shown that the regioselectivity and rate of catalytic acetolysis of epichlorohydrin are effectively controlled by the structure of tertiary amines and the polarity of the solvent. The scheme of reaction regio-flows was detailed.