Electronic Structure of the Low‐Lying States of the Triatomic MoS2 Molecule: The Building Block of 2D MoS2

Electronic Structure of the Low-Lying States of the Triatomic MoS2 Molecule: The Building Block of 2D MoS2

The triatomic MoS2 molecule is the building component of solid MoS2. In this work, the electronic structure and chemical bonding of 16 low-lying states of triatomic MoS2 are studied. The low-lying septet states of triatomic MoS2 are found to be involved in the material as a building block, explaining the variety of its morphologies.


Abstract

Molybdenum disulfide (MoS2) is the building component of 1D-monolayer, 2D-layered nanosheets and nanotubes having many applications in industry, and it is detected in various molecular systems observed in nature. Here, the electronic structure and the chemical bonding of sixteen low-lying states of the triatomic MoS2 molecule are investigated, while the connection of the chemical bonding of the isolated MoS2 molecule to the relevant 2D-MoS2, is emphasized. The MoS2 molecule is studied via DFT and multireference methodologies, i. e., MRCISD(+Q)/aug-cc-pVQZ(−PP)Mo. The ground state, 3B1, is bent (Mo−S=2.133 Å and ϕ(SMoS)=115.9°) with a dissociation energy to atomic products of 194.7 kcal/mol at MRCISD+Q. In the ground and in the first excited state a double bond is formed between Mo and each S atom, i. e., . These two states differ in which d electrons of Mo are unpaired. The Mo−S bond distances of the calculated states range from 2.108 to 2.505 Å, the SMoS angles range from 104.1 to 180.0°, and the Mo−S bonds are single or double. Potential energy curves and surfaces have been plotted for the 3B1, 5A1 and 5B1 states. Finally, the low-lying septet states of the triatomic molecule are involved in the material as a building block, explaining the variety of its morphologies.