Insight into the Structure of MOF‐Containing Hybrid Polymeric Microspheres

Insight into the Structure of MOF-Containing Hybrid Polymeric Microspheres

Polymer science has exploited MOFs for various purposes, which is due to the fact that these structures are ideal platforms for identifying design features for advanced functional materials. The mechanism of polymerization using MOFs is still largely unexplored and the detailed characterization of both materials is essential to understand the important interactions between the components.


Abstract

Polymer science exploited metal organic frameworks (MOFs) for various purposes, which is due to the fact that these materials are ideal platforms for identifying design features for advanced functional materials. The mechanism of polymerization using MOFs, is still largely unexplored and the detailed characterization of both materials in essential to understand the important interactions between the components. In this work modern advanced research methods were used to investigate the properties of MOF-containing hybrid polymeric microspheres. Hydrothermal conversion of CFA-derived iron particles was used to obtain MOF nanostructures, which were then introduced to the structure of hybrid polymer microspheres based on ethylene glycol dimethylacrylate (EGDMA) and triethoxyvinylsilane (TEVS). Chemical structures were confirmed by ATR-FTIR method. To provide information about the elemental composition of the tested materials and for the determination of chemical bonds present in the tested samples XPS method was applied. Morphology was studied using SEM microscopy, whereas porosity was investigated using ASAP technique. Swellability coefficients were determined using typical organic solvents and distilled water. Moreover, the ecological aspect concerning the use of fly ashes deserves to be emphasized.