Delivering on Cell‐Selective Protein Degradation Using Chemically Tailored PROTACs

Delivering on Cell-Selective Protein Degradation Using Chemically Tailored PROTACs

Pro-PROTAC, with precise and selective modulation within specific cell populations, would greatly enhance the target protein degradation process in a controllable manner. The development of such innovative chemistry holds significant promise for advancing the field of targeted protein degradation.


Abstract

PROTACs (Proteolysis-Targeting Chimeras) have emerged as a groundbreaking class of chemical tools that facilitate the degradation of target proteins by leveraging the ubiquitin-proteasome system (UPS). However, the effective utilization of PROTACs in chemical biology studies and therapeutics encounters significant challenges when it comes to achieving cell-selective protein degradation and in vivo applications. This review article aims to shed light on recent advancements in the development of Pro-PROTACs, which exhibit controlled protein degradation capabilities in response to external stimuli or disease-related endogenous biochemical signals. The article delves into the specific chemical strategies employed to regulate the interaction between PROTACs and E3 ubiquitin ligases or target proteins. These strategies enable spatial and temporal control over the protein degradation potential of Pro-PROTACs. Furthermore, the review summarizes recent investigations regarding the delivery of PROTACs using biodegradable nanoparticles for in vivo applications and targeted protein degradation. Such delivery systems hold great promise for enabling efficient and selective protein degradation in vivo. Lastly, the article provides a perspective on the future design of multifunctional PROTACs and their intracellular delivery mechanisms, with a particular focus on achieving cell-selective protein degradation.