We demonstrated the first sequential synthesis of gem-selenoborylation via the diboration of aldehydes and ketones. The selenation of the α-oxyl alkyl boronates was successfully achieved providing a series of synthetically valuable α-seleno alkyl boronates with good functional group tolerance.
Abstract
A method has been described for accessing α-seleno alkyl boronates. The selenoboration was achieved via the diboration of carbonyl compounds to give α-oxyl boronates, which then undergo 1,2-metalate rearrangement in the presence of lithium selenolates and trifluoroacetic anhydride (TFAA). A variety of structurally diverse substrates were compatible with this protocol and efficiently provides difunctionalized products from simple starting materials. The presence of the boronic ester in the resulting organoselenium compounds serves as a versatile synthetic handle for various functionalizations. Mechanistic studies revealed that the binding of selenium nucleophile to both the boron centers in α-oxyl boronate esters.