Using their own triazine groups as natural receptors, the introduction of various donor units to construct donor-receptor configuration in covalent triazine frameworks (CTFs) has been shown to be an effective strategy to improve photocatalytic activity. In this work, the effect of donor unit content (D-content) on the photoelectric properties and photocatalytic activity of CTFs was thoroughly investigated. Four analogous CTFs with different D-content have been rationally designed and synthesized, in which the bithiophene (Btp) as the donor unit and triazine as the acceptor unit. And CTF-Btp with the highest D-content showed the best photocatalytic activity. The experimental and theoretical results indicated this improvement is attributed to stronger visible light absorption capacity and higher photoinduced charge carrier separation efficiency. This study elucidates the relationship between the structural features of CTFs with varying D-content and their photocatalytic activity, offering a promising strategy for developing efficient photocatalysts.