An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches

Abstract

The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.

Electrically stimulated in vitro heart cell mimic of acute exercise reveals novel immediate cellular responses to exercise: Reduced contractility and metabolism, but maintained calcium cycling and increased myofilament calcium sensitivity

Abstract

Cardiac cellular responses to acute exercise remain undescribed. We present a model for mimicking acute aerobic endurance exercise to freshly isolated cardiomyocytes by evoking exercise-like contractions over prolonged periods of time with trains of electrical twitch stimulations. We then investigated immediate contractile, Ca2+, and metabolic responses to acute exercise in perfused freshly isolated left ventricular rat cardiomyocytes, after a matrix-design optimized protocol and induced a mimic for acute aerobic endurance exercise by trains of prolonged field twitch stimulations. Acute exercise decreased cardiomyocyte fractional shortening 50%–80% (p < .01). This was not explained by changes to intracellular Ca2+ handling (p > .05); rather, we observed a weak insignificant Ca2+ transient increase (p = .11), while myofilament Ca2+ sensitivity increased 20%–70% (p < .05). Acidic pH 6.8 decreased fractional shortening 20%–70% (p < .05) because of 20%–30% decreased Ca2+ transients (p < .05), but no difference occurred between control and acute exercise (p > .05). Addition of 1 or 10 mM La increased fractional shortening in control (1 mM La: no difference, p > .05; 10 mM La: 20%–30%, p < .05) and acute exercise (1 mM La: 40%–90%, p < .01; 10 mM La: 50%–100%, p < .01) and rendered acute exercise indifferent from control (p > .05). Intrinsic autofluorescence showed a resting NADstate of 0.59 ± 0.04 and FADstate of 0.17 ± 0.03, while acute exercise decreased NADH/FAD ratio 8% (p < .01), indicating intracellular oxidation. In conclusion, we show a novel approach for studying immediate acute cardiomyocyte responses to aerobic endurance exercise. We find that acute exercise in cardiomyocytes decreases contraction, but Ca2+ handling and myofilament Ca2+ sensitivity compensate for this, while acidosis and reduced energy substrate and mitochondrial ATP generation explain this.

Bilirubin in wound healing: A double‐edged sword

Abstract

The impact of bilirubin levels on wound healing remains a topic of controversy. The present study is a literature review that examines the impact of increased levels of bilirubin in the bloodstream on the process of wound healing. The physiological pathways and their interrelationships, as well as the relevant research publications, were comprehensively addressed in our discussion. The present study undertook a comprehensive review of the extant literature pertaining to the impact of bilirubin concentration on the process of wound healing, with particular emphasis on its association with reactive oxygen species. This scholarly article provides an overview of several studies that elucidate the mechanisms and correlation between bilirubin and the process of wound healing. The impact of bilirubin on wound healing has been observed, and it appears to function as a modulator. This review demonstrates that there exists a spectrum of bilirubin concentrations that can function as precise regulators, although this range falls under pathological hyperbilirubinemia. Further research is required to determine the precise boundary of this range. Within a certain range, bilirubin serves as a positive regulator in the process of wound healing. Beyond this range, it has the potential to function as a negative regulator.

Mechanistic study on the anti‐proinflammatory activity of Kunitz type inhibitor from Caesalpinia decapetala seeds

Abstract

The study reports the biochemical characterization and mechanism of action of a novel 19.6 kDa protease inhibitor (PIs) isolated from the seeds of Caesalpinia decapetala belonging to the Fabaceae family. A systematic study was performed to ascertain the purity, specificity, biochemical and structural characterization, and its potential in curbing inflammation in vitro conditions. A two-step chromatography technique was used to purify the PIs. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight were employed to detect the molecular mass of the protein. N-terminal sequence analysis of the inhibitor showed sequence similarity with the Kunitz family PIs. The in vitro test tube assay was performed for determining the anti-inflammatory activity and the inhibitor is antiproliferative against macrophage (RAW264.7) and lung cancer cell lines (A549). An effective decrease in the release of inflammatory mediators (NO, IL-6, TNF-α) and on the activity of elastase was observed in macrophage cell lines (RAW264.7) which were treated with PIs. The purified inhibitor shows promising results against inflammation.

Matcha‐silver nanoparticles reduce gamma radiation‐induced oxidative and inflammatory responses by activating SIRT1 and NLRP‐3 signaling pathways in the Wistar rat spleen

Abstract

The biogenic synthesis of nanoparticles has drawn significant attention. The spleen is the largest lymphatic organ that is adversely impacted during irradiation. The current study was designated to evaluate the possible anti-inflammatory effect of matcha-silver nanoparticles (M-AgNPs) to reduce inflammation associated with γ-radiation induced-oxidative stress and inflammation in rats' spleen. Silver nanoparticles (AgNPs) were synthesized by biogenic synthesis using a green sonochemical method from matcha (M) green tea. The obtained M-AgNPs were extensively characterized by dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, and Fourier-transform infrared spectroscopy. Using zetasizer analysis, the surface charge, particle size, and radical scavenging DPPH assay of M-AgNPs were also examined. Biocompatibility and cytotoxicity were analyzed by MTT assay, and the IC50 was calculated. Four groups of 24 Wistar rats each had an equal number of animals. The next step involved measuring the levels of oxidative stress markers in the rat splenic tissue. Additionally, the amounts of inflammatory protein expression were evaluated using the ELISA analysis. The results indicated the formation of spherical nanoparticles of pure Ag° coated with matcha polyphenols at the nanoscale, as well as uniform monodisperse particles suited for cellular absorption. Results revealed that M-AgNPs improved all biochemical parameters. Furthermore, M-AgNPs relieve inflammation by reducing the expression of NOD-like receptor family pyrin domain-containing 3 (NLRP3), interleukin-1β (IL-1β), and enhancing the levels of ileSnt information regulator 1 (SIRT1). Histopathological examinations demonstrated the ability of M-AgNPs to overcome the damage consequent to irradiation and recover the spleen's cellular structure. These results confirmed that matcha is a potential biomaterial for synthesizing AgNPs, which can be exploited for their anti-inflammatory activity.