New Dibenzocyclooctadiene Lignans and Phenolics from Kadsura heteroclite with Anti‐Inflammatory Activity

New Dibenzocyclooctadiene Lignans and Phenolics from Kadsura heteroclite with Anti-Inflammatory Activity


Abstract

A chemical investigation of K. heteroclite led to isolation of two new dibenzocyclooctadienes (1 and 2) together with 14 known compounds (316) by using multiple chromatographic techniques. New compounds (1 and 2) were obtained and identified by spectroscopic methods (HR-ESI-MS, 1D and 2D NMR, and ECD) as well as by comparison of their experimental data with those reported in the literatures. All the isolates were evaluated for their ability to modulate TNF-α production in lipopolysaccharide (LPS) stimulated RAW264.7 cells. Among them, compound 5 displayed the most inhibition against tumor necrosis factor (TNF)-α production with IC50 value of 6.16±0.14 μM. Whereas, compounds (1, 3, and 6) showed the significant inhibition (IC50 values ranging from 9.41 to 14.54 μM), and compounds (2, 4, 9, 10, 13, 15, and 16) exhibited moderate inhibition (IC50 values ranging from 19.27 to 40.64 μM) toward TNF-α production, respectively.

Combination of UHPLC‐Q Exactive‐Orbitrap MS, Bioinformatics and Molecular Docking to Reveal the Mechanism of Huan‐Lian‐Jie‐Du Decoction in the Treatment of Diabetic Encephalopathy

Combination of UHPLC-Q Exactive-Orbitrap MS, Bioinformatics and Molecular Docking to Reveal the Mechanism of Huan-Lian-Jie-Du Decoction in the Treatment of Diabetic Encephalopathy


Abstract

Diabetic encephalopathy (DE) is a serious complication of diabetes, which affects patients′ quality of life. We aimed to explore HLJDD in the treatment of DE by LC/MS and bioinformatics. UPLC-Q Exactive-Orbitrap MS was employed to clarify the compounds. The modules and hub targets of DE were gained from WGCNA. Subsequently, an Herb-Compound-Target network was constructed and enrichment analysis was used. In addition, a protein-protein interaction (PPI) network was constructed and molecular docking was used to verify the above analysis. As result, 138 compounds and 10 prototypes in brain were identified. In network pharmacology, 8 modules and 5692 hub targets were obtained from WGCNA. An Herb-Compound-Target network was constructed by 4 herbs, 10 compounds and 56 targets. The enrichment analysis showed that the treatment of DE with HLJDD involve oxidative stress and neuroprotection. Beside, SRC, JUN, STAT3, MAPK1 and PIK3R1 were identified and as hub targets of HLJDD in treating DE. Moreover, Molecular docking showed that five hub targets had strong affinity with the corresponding alkaloids. Therefore, we explored the underlying mechanisms of HLJDD in the treatment of DE and to provide the theoretical and scientific basis for subsequent experimental studies and clinical applications.

Synthesis of Imidazole‐2,3‐dihydrothiazole Compounds as VEGFR‐2 Inhibitors and Their Support with in Silico Studies

Synthesis of Imidazole-2,3-dihydrothiazole Compounds as VEGFR-2 Inhibitors and Their Support with in Silico Studies


Abstract

In this study, 12 novel 2-((1-(4-(1H-imidazol-1-yl)phenyl)ethylidene)hydrazineylidene)-3-ethyl-4-(substitutephenyl)-2,3-dihydrothiazole derivatives were obtained. Among these compounds, 2-((1-(4-(1H-imidazol-1-yl)phenyl)ethylidene)hydrazineylidene)-4-([1,1′-biphenyl]-4-yl)-3-ethyl-2,3-dihydrothiazole (4h) was chosen as the most active derivative in the series. According to the MTT results, compounds 4h and 4k showed activity with IC50=4.566±0.246 μM and IC50=4.537±0.463 μM, respectively. Unlike other derivatives, compound 4h carries a phenyl ring in the 4th position of the phenyl ring. This bulky group allowed the compound to settle in the enzyme active site. Dynamic studies show that the stability of the compound does not change over 40 ns. RMSD, RMSF and Rg parameters all remained within acceptable limits. The uninterrupted aromatic hydrogen bonding of the enzyme active site with the important amino acids Cys919, Glu885 and Asp1046 proves the inhibitory potential of compound 4h on the VEGFR-2 enzyme. It is thought that more active compounds will be reached with the derivatives to be synthesized starting from compound 4h.

Plants from Northwestern Anatolia Display Selective Cytotoxicity and Induce Mitotic Catastrophe: A Study on Anticancer and Genotoxic Activities

Plants from Northwestern Anatolia Display Selective Cytotoxicity and Induce Mitotic Catastrophe: A Study on Anticancer and Genotoxic Activities


Abstract

Anatolia is rich in floristic diversity with a high rate of endemism. Eight plant species from northwestern Anatolia were evaluated for their anti-growth properties in two malignant (MCF-7 and MDA-MB-231) and a non-malignant (MCF-10A) breast cell lines. The two most active extracts, Achillea multifida (AME) and Astragalus sibthorpianus (ASE), induced apoptotic cell death in all cell lines. The major phenolic compounds in AME were identified as chlorogenic acid, and catechins in ASE. ASE displayed selective cytotoxicity against breast cancer cells, with DNA damage repair in non-malignant cells contributing to its selectivity. Conversely, AME induced DNA damage in a time-dependent manner and displayed a dual dose-dependent biological activity, resulting in mitotic catastrophe and apoptosis at different doses. Most plant species exhibited moderate to strong cytotoxicity, highlighting their medicinal and economic potential and the need for their protection.

Analysis of Volatile Constituent by Hydrodistillation and Solid‐Phase Microextraction Techniques and Antimicrobial and Scolicidal Activities of Essential Oil and Soxhlet Extracts of Ulva rigida grown in Turkey

Analysis of Volatile Constituent by Hydrodistillation and Solid-Phase Microextraction Techniques and Antimicrobial and Scolicidal Activities of Essential Oil and Soxhlet Extracts of Ulva rigida grown in Turkey


Abstract

In the present study, the volatile composition of Ulva rigida (U. rigida) was elucidated by two different methods. As a result of the identification process of volatile components using the GC/MS-FID instrument, 31 compounds were identified by hydrodistillation (HD) method, and 15 compounds were identified by solid-phase microextraction (SPME) method, elucidating the structure of 99.86 % and 92.65 %, respectively. The most abundant compounds in the essential oil of U. rigida were n-hexadecanoic acid and pentadecanal, while the most abundant compound according to the SPME analysis was heptadecyne, a hydrocarbon compound. In the next step, hexane, dichloromethane, chloroform and methanol solvent extracts of U. rigida were prepared and the antimicrobial activities of the extracts and the essential oil obtained by hydro-distillation as well as the scolicidal activities of the solvent extracts were determined. The results of the antimicrobial activity test of the essential oil showed a high level of activity against Bacillus cereus ATCC 10876 and MRSA. The highest activity was found on the microorganism of Pseudomonas aeruginosa ATCC 9027 in chloroform and methanol extracts of U. rigida. Furthermore, viability detection was performed and the scolicidal effects of the extracts on protoscoleces were assessed. The values of lethal concentration doses (LD50, LD75 and LD90) were calculated using probit analysis.

Phytochemical Profiling and Pharmacological Evaluation of Leaf Extracts of Ruellia tuberosa L.: An In Vitro and In Silico Approach

Phytochemical Profiling and Pharmacological Evaluation of Leaf Extracts of Ruellia tuberosa L.: An In Vitro and In Silico Approach


Abstract

The present study was designed to appraise the photoprotective, antioxidant, and antibacterial bioactivities of Ruellia tuberosa leaves extracts (RtPE, RtChl, RtEA, RtAc, RtMe, and RtHMe). The results showed that, RtHMe extracts of R. tuberosa was rich in total phenolic content, i. e., 1.60 mgGAE/g dry extract, while highest total flavonoid content was found in RtAc extract, i. e., 0.40 mgQE/g. RtMe showed effective antioxidant activity (%RSA: 58.16) at the concentration of 120 μL. RtMe, RtEA and RtHMe exhibited effective in vitro antibacterial activity against Gram-negative bacteria (E. coli). In silico docking studies revealed that paucifloside (−11.743 kcal/mol), indole-3-carboxaldehyde (−7.519 kcal/mol), nuomioside (−7.275 kcal/mol), isocassifolioside (−6.992 kcal/mol) showed best docking score against PDB ID 2EX8 [penicillin binding protein 4 (dacB) from Escherichia coli, complexed with penicillin-G], PDB ID 6CQA (E. coli dihydrofolate reductase protein complexed with inhibitor AMPQD), PDB ID 2Y2I [Penicillin-binding protein 1B in complex with an alkyl boronate (ZA3)] and PDB ID 2OLV (from S. aureus), respectively. Docked phytochemicals also showed good drug likeness properties.

Three New Labdane‐Type Diterpenoids from the Fruits of Amomum villosum and Their Anti‐Inflammatory Activities

Three New Labdane-Type Diterpenoids from the Fruits of Amomum villosum and Their Anti-Inflammatory Activities


Abstract

Three new labdane-type diterpenoids, calcaratarin E, villosumtriol, and 12-epi-villosumtriol (13) were isolated from the fruits of Amomum villosum, along with seven known diterpenoids (410). Through comprehensive analysis of chemical evidence and spectral data including UV, 1D and 2D NMR, HR-ESI-MS, IR, and X-ray crystallography, the structures of these novel compounds were successfully determined. Additionally, the inhibitory effects of compounds 210 on NO production in lipopolysaccharide (LPS)-induced RAW264.7 cells were evaluated. Notably, compound 6 exhibited the most significant inhibitory effect with an IC50 value of 1.74±0.69 μM.

Two New Amides from Physochlainae Radix

Two New Amides from Physochlainae Radix


Abstract

In this article, two undescribed amides (12) with an unusual (2-formyl-5-hydroxymethyl)pyrroyl-butylamine moiety were obtained from the Physochlainae Radix. Comprehensive spectroscopic studies, including NMR and HR-ESI-MS, coupling with spectroscopic data comparisons were used to determine structures. Anti-inflammatory assay results showed that new amides possessed significant inhibitory activities of the NO production of LPS-induced RAW 264.7 cells, with IC50 values of 17.52±1.68 μM and 20.37±2.42 μM, respectively.

Lycopodium Alkaloids from Huperzia serrata and Their Anti‐acetylcholinesterase Activities

Lycopodium Alkaloids from Huperzia serrata and Their Anti-acetylcholinesterase Activities


Abstract

One new fawcettimine-type alkaloid (1), one new miscellaneous-type alkaloid (2), four new lycodine-type alkaloids (36), and eight known ones (714) were isolated from the whole plants of Huperzia serrata. Their structures and absolute configurations were elucidated based on spectroscopic data, X-ray diffraction, ECD calculation and Mosher's method. Compound 1 was a rare C18N2-type Lycopodium alkaloid, possessing serratinine skeleton with an amide side chain in C-5. The absolute configuration of the 18-OH of compounds 46 were first determined by Mosher's method. Moreover, compounds 114 were assayed anti-acetylcholinesterase effect in vitro, and compound 7 showed significant anti-acetylcholinesterase activity with an IC50 value of 16.18±1.64 μM.

Synthesis, in Silico Study and Biological Evaluation of N‐(Benzothiazol/Thiazol‐2‐yl)benzamide Derivatives as Quorum Sensing Inhibitors against Pseudomonas aeruginosa

Synthesis, in Silico Study and Biological Evaluation of N-(Benzothiazol/Thiazol-2-yl)benzamide Derivatives as Quorum Sensing Inhibitors against Pseudomonas aeruginosa


Abstract

The development of bacterial resistance to chemical therapy poses a severe danger to efficacy of treating bacterial infections. One of the key factors for resistance to antimicrobial medications is growth of bacteria in biofilm. Quorum sensing (QS) inhibition was created as an alternative treatment by developing novel anti-biofilm medicines. Cell-cell communication is impeded by QS inhibition, which targets QS signaling pathway. The goal of this work is to develop newer drugs that are effective against Pseudomonas aeruginosa by decreasing QS and acting as anti-biofilm agents. In this investigation, N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h were designed and synthesized in good yields. Further, molecular docking analyses revealed that binding affinity values were founded −11.2 to −7.6 kcal/mol that were moderate to good. The physicochemical properties of these prepared compounds were investigated through in-silico method. Molecular dynamic simulation was also used to know better understanding of stability of the protein and ligand complex. Comparing N-(benzo[d]thiazol-2-yl)benzamide 3a to salicylic acid (4.40±0.10) that was utilised as standard for quorum sensing inhibitor, the anti-QS action was found greater for N-(benzo[d]thiazol-2-yl)benzamide 3a (4.67±0.45) than salicylic acid (4.40±0.10). Overall, research results suggested that N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h may hold to develop new quorum sensing inhibitors.