Chemical Composition of Essential Oil from Mosses from the Brazilian Atlantic Forest

Chemical Composition of Essential Oil from Mosses from the Brazilian Atlantic Forest


Abstract

This study aimed to report the unprecedented volatile composition of the mosses Phyllogonium viride BRID, Orthotichella rigida (MÜLL.HAL.) B. H. ALLEN & MAGILL and Schlotheimia rugifolia (HOOK.) SCHWÄGR occurring in the Brazilian Atlantic Forest, in order to elucidate the chemical composition of these species and enrich the chemotaxonomic knowledge of mosses. 28 compounds were identified, the major constituent being hexadecanoic acid, also known as palmitic acid, specifically P. viride com (38.55 %), O. rigida com (17.17 %) and S. rugifolia com (24.94 %), followed by phytol, P. viride com (3.92 %), O. rigida com (28.57 %) and S. rugifolia com (36.13 %). In addition, there was a prevalence of aliphatic hydrocarbons (25 %) and fatty acids (17.8 %) in the evaluated samples. These data contribute to the generation of new scientific information about the chemical constitution of mosses, still little studied, enriching the chemotaxonomic collection of the taxon.

Terpenoids from Euphorbia helioscopia and Their Cytotoxic Activities against H1975 Cells

Terpenoids from Euphorbia helioscopia and Their Cytotoxic Activities against H1975 Cells


Abstract

Three previously undescribed diterpenoids, helioscopnoids A–C, and eight known compounds were isolated from the whole plants of Euphorbia helioscopia. Their structures were established by extensive analysis of spectra and data comparison with previous literatures. Among them, compound 4 was identified as 24,24-dimethoxy-25,26,27-trinoreuphan-3β-ol with revised configurations of C-13, C-14, and C-17 (13R*, 14R*, 17R*). Cytotoxicity assays revealed that all compounds exhibited varying levels of cytotoxicity against H1975 cells, with compound 9 displaying the most potent activity, as indicated by cell viability rates of 18.13 % and 20.76 % at concentrations of 20 μM and 5 μM, respectively. This study expands the understanding of E. helioscopia terpenoids’ structural diversity and biological activities, contributing to the exploration of potential therapeutic applications.

Extraction and Characteri zation of Bioactive Compounds from Diverse Marine Microalgae and Their Potential Antioxidant Activities

This study compared free and bound phenolic compounds in various marine microalgae species. It assessed total phenolic content (TPC), total flavonoid content (TFC) and total condensed tannin content (TCT) and their antioxidant capacities using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical cation-based assay and ferric ion reducing antioxidant power assay. Liquid chromatography-mass spectrometry (LC-MS) was also employed to characterize the phenolic profiling. Results showed that free phenolic compounds ranged from 1.83 – 6.45 mg GAE/g d.w., while bound phenolic compounds ranged from 4.03 – 26.03 mg GAE/g d.w., indicating significant differences. These variations were consistent across assays, highlining unique profiles in different species. A total 10 phenolics were found in these seven microalgae, including 1 phenolic acid, 6 flavonoids, 1 other polyphenol and 2 lignans. 4'-O-methyl-(-)-epigallocatechin 7-O-glucuronide and chrysoeriol 7-O-glucoside in microalgae were firstly reported in microalgal samples. These findings have implications for future applications in industries.

N‐Sulfonyl‐1,2,3,4‐tetrahydroisoquinoline Derivatives: Synthesis, Antimicrobial Evaluations, and Theoretical Insights

Microbial contamination remains a significant economic challenge in the food industry, emphasizing the need for innovative antimicrobial solutions. In this study, we synthesized N-sulphonyl-1,2,3,4-tetrahydroisoquinolines (NSTHIQ) derivatives using an environmentally friendly Preyssler heteropolyacid catalyst, obtaining moderate to high yields (35-91%) under mild conditions. Two derivatives (5 and 6) exhibited significant antifungal properties against various fungal species, including Aspergillus spp, Penicillium spp, and Botrytis cinerea. ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis revealed the absence of hepatic toxicity in all compounds, making derivatives 2, 3, 4, and 5 potential candidates for further development. However, derivatives 6 and 7 exhibited immunotoxicity. In support of our experimental findings, reactivity indices were computed using Density Functional Theory principles, deriving valuable insights into the chemical properties of these derivatives. This study underscores the potential of NSTHIQ compounds as potent antifungal agents, coupled with the importance of employing environmentally friendly catalysts in drug discovery.

Nanotechnology‐Based Strategies for Extended‐Release Delivery of Angiotensin Receptor Blockers (ARBs): A Comprehensive Review

There has been a significant shift in the perception of hypertension as an important contributor to the global disease burden. Approximately 6% and 8% of pregnancies are affected by hypertension, which can adversely affect the mother and the fetus. Furthermore, a hypertensive individual is at increased risk of developing kidney disease, arterial hardening, eye damage, and strokes. Using angiotensin receptor blockers (ARBs) is widespread in treating hypertension, heart failure, coronary artery disease, and diabetic nephropathy. Despite this, some ARBs have limited use due to their poor oral bioavailability and water solubility. To tackle this, a variety of nanoparticle (NP)-based systems, such as polymeric NPs (i.e., dendrimers), polymeric micelles, polymer-drug conjugates, lipid NPs, nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid NPs (SLNs), nanostructured lipid carriers (NLCs), carbon-based nanocarriers, inorganic NPs, and nanocrystals, have been recently developed for efficient delivery of losartan, Valsartan (Val), Olmesartan (OLM), Telmisartan (TEL), Candesartan, Eprosartan, Irbesartan, and Azilsartan to target cells. This review article provides a literature-based comparison of the various classes of ARBs, their mechanisms of action, and an overview of the nanoformulations developed for ARB delivery and successfully applied to managing hypertension, diabetic complications, and other conditions.

Antiedematogenic and analgesic activities of abietic acid in mice

The present study aimed to evaluate abietic acid's antiedematogenic and anti-inflammatory activity in mice. Swiss mice (Mus musculus) weighing 20-30 g were treated with AA at 50, 100, and 200 mg/kg. The central nervous system (CNS) effects were evaluated using open-field and rotarod assays. The antinociceptive and anti-inflammatory screening was assessed by the acetic acid and formalin tests. The antiedematogenic activity was investigated by measuring paw edema induced by carrageenan, dextran, histamine, arachidonic acid, and prostaglandin, in addition to using a granuloma model. The oral administration of abietic acid (200 mg/Kg) showed no evidence of CNS effects. The compound also exhibited significant antiedematogenic and anti-inflammatory activities in the carrageenan and dextran models, mostly related to the inhibition of myeloperoxidase (MOP) activity and histamine action and, to a lesser extent, the inhibition of eicosanoid-dependent pathways. In the granuloma model, abietic acid's effect was less expressive than in the acute models investigated in this study. In conclusion, abietic acid has analgesic and antiedematogenic activities related to anti-inflammatory mechanisms.

Multicomponent Synthesis Strategies, Catalytic Activities, and Potential Therapeutic Potential of Pyranocoumarins: A Comprehensive Review

Multicomponent Synthesis Strategies, Catalytic Activities, and Potential Therapeutic Potential of Pyranocoumarins: A Comprehensive Review


Abstract

Fused coumarins, because of their remarkable biological and therapeutic properties, particularly pyranocoumarins, have caught the interest of synthetic organic chemists, leading to the development of more efficient and environmentally friendly protocols for synthesizing pyranocoumarin derivatives. These compounds are the most promising heterocycles discovered in both natural and synthetic sources, with anti-inflammatory, anti-HIV, antitubercular, antihyperglycemic, and antibacterial properties. This review employed the leading scientific databases Scopus, Web of Science, Google Scholar, and PubMed up to the end of 2022, as well as the combining terms pyranocoumarins, synthesis, isolation, structural elucidation, and biological activity. Among the catalysts employed, acidic magnetic nanocatalysts, transition metal catalysts, and carbon-based catalysts have all demonstrated improved reaction yields and facilitated reactions under milder conditions. Herein, the present review discusses the various multicomponent synthetic strategies for pyranocoumarins catalyzed by transition metal-based catalysts, transition metal-based nanocatalysts, transition metal-free catalysts, carbon-based nanocatalysts, and their potential pharmacological activities.

Unveiling the Anthelminthic Potential of Merremia vitifolia Stem through in Vitro and in Silico Approach

Unveiling the Anthelminthic Potential of Merremia vitifolia Stem through in Vitro and in Silico Approach


Abstract

This study aimed to assess the anthelmintic activity of methanol extracts from Merremia vitifolia stems using a combination approach encompassing experimental, in vitro, and in silico evaluations. Despite the well-recognized pharmacological properties of M. vitifolia, its potential as an anthelmintic agent remained unexplored. This plant's anthelmintic potential was assessed on adult earthworms (Pheretima posthuma), revealing a dose-dependent reduction in spontaneous motility leading to paralysis and eventual mortality. The most effective dose of M. vitifolia (200 mg/ml) for anthelmintic effects on Pheretima posthuma was identified. Complementary in silico investigations were also conducted, employing Autodock PyRx 0.8 for docking studies of reported M. vitifolia compounds. Notably, quercetin emerged as a promising candidate with superior binding energies against β-tubulin (−8.3 Kcal/mol). Moreover, this comprehensive research underlines the anthelmintic potential of Merremia vitifolia stem extract and highlights quercetin as a noteworthy compound for further investigation in the quest for novel anthelmintic agents.

Aptamers: Features, Synthesis and Applications

Aptamers: Features, Synthesis and Applications


Abstract

Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.

Evaluation of the Potential Therapeutic Properties of Liquidambar orientalis Oil

Evaluation of the Potential Therapeutic Properties of Liquidambar orientalis Oil


Abstract

Liquidambar orientalis Mill., commonly called the Anatolian sweetgum or Sigla tree, is endemic to southwestern Turkey. It has been historically significant in traditional medicine. In our research, we delved into the therapeutic attributes of its oil, emphasizing its antioxidant, antimicrobial, and antitumor properties. The primary chemical constituent of the gum is styrene, accounting for 78.5 %. The gum demonstrated antioxidant capabilities in several assays, including in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). It displayed bactericidal actions against various gram-positive bacteria, such as Staphylococcus aureus, and gram-negative strains, including Escherichia coli. Additionally, the oil showcased potent antitumor effects against breast (MDA-MB-231), lung (A549), and prostate (PC3) cancer cell lines. These effects were found to be both time- and dose-dependent. L. orientalis Mill. oil showed the best antitumor activity against breast, lung, and prostate cancer cell lines after the 24 h and 48 h treatment. Its oil might induce autophagy in the PC3 prostate cancer cell line, whereas its cytotoxicity against MDA-MB-231 and A549 cancer cell lines might not be correlated with autophagy or apoptosis pathways. In conclusion, the oil from the Sigla tree offers promising therapeutic potential and warrants further exploration.