Abstract
Helicobacter pylori colonizes the gastric epithelium of 50 % of world population and it is the main etiological agent of human chronic gastritis, peptic ulcer, and gastric cancer. In this study, we synthesized and characterized a series of 14 chalcones and evaluated their anti-H. pylori, NO inhibition (in vitro and in silico), and AGS cells cytotoxic effects. Compounds 3b and 3h showed MIC of 8 μg/mL. We observed structure-activity relationships, mainly related to the influence of methoxy substituent at C-2 (3b) and the nitro group at C-4 (3h) in chalcone scaffold. The fourteen chalcones inhibited the NO production in LPS-stimulated macrophages and showed potential for interaction on the active site of the iNOS enzyme. Finally, 3b and 3h showed the highest selectivity to the AGS cell lines. Thus, ours results suggest 3b and 3h as potential candidates for design of new and effective agents against H. pylori and related diseases.