Abstract
Some novel inhibitors based on the (benzo[d]thiazol-2-yl)-1-phenylmethanimine derivatives were designed to reduce the aggregation process in Alzheimer's disease. These structures seem to mimic stilbene-like scaffold, while the benzothiazole moiety “locks” the thioflavin T binding site. Other inhibitors were designed based on 2-((benzo[d]thiazol-2-ylimino)methyl)-5-(benzyloxy)-1-methylpyridin-4(H)-one derivatives.
Benzo[d]thiazol-2-amine derivatives were prepared by the reaction of aniline derivatives with ammonium thiocyanate in the presence of bromine/acetic acid. Then, the reaction of amines with benzaldehyde derivatives and 5-(benzyloxy)-1-methyl-4-oxo-1,4-dihydropyridine-2-carbaldehyde gave the desired compounds. The plate reader-based fibrillation assay was done to evaluate the inhibition of Aβ aggregation. Also, molecular dynamic simulation was carried out to clarify the interaction manner of the designed compounds with Aβ formation.
The biological evaluation proved 5a and 7e as the best inhibitor of the Aβ aggregation. compound 5a in the concentration of 50 μM inhibited Aβ fibril formation better than 7e. MD simulation elucidated that the Aβ aggregation inhibitors in different concentrations represented different binding conformations throughout the entire or in one area of Aβ. MD showed the ligands in lower concentrations accumulate in an area of Aβ aggregations and separate one fibril from the aggregated Aβ. On the contrary, in higher concentrations, the ligands tend to be located through the entire Aβ.