Isolation of Two Plasticizers, Bis(2‐ethylhexyl) Terephthalate and Bis(2‐ethylhexyl) Phthalate, from Capparis spinosa L. Leaves

Isolation of Two Plasticizers, Bis(2-ethylhexyl) Terephthalate and Bis(2-ethylhexyl) Phthalate, from Capparis spinosa L. Leaves


Abstract

Many plants have been known to be contaminated and accumulate plasticizers from the environment, including water sources, soil, and atmosphere. Plasticizers are used to confer elasticity and flexibility to various fiber and plastic products. Consumption of plasticizers can lead to many adverse effects on human health, including reproductive and developmental toxicity, endocrine disruption, and cancer. Herein, we report for the first time that two plasticizers, bis(2-ethylhexyl) terephthalate (DEHT) and bis(2-ethylhexyl) phthalate (DEHP), have been isolated from the leaves of Capparis spinosa L. (the caper bush), a plant that is widely used in food seasonings and traditional medicine. 297 mg/kg of DEHT and 48 mg/kg of DEHP were isolated from dried and grounded C. spinosa L. leaves using column chromatography and semi-preparative high-performance liquid chromatography. Our study adds to the increase in the detection of plasticizers in our food and medicinal plants and to the alarming concern about their potential adverse effects on human health.

A Comparative GC/MS Analysis of Citrus Essential Oils: Unveiling the Potential Benefits of Herb‐Drug Interactions in Preventing Paracetamol‐Induced Hepatotoxicity

A Comparative GC/MS Analysis of Citrus Essential Oils: Unveiling the Potential Benefits of Herb-Drug Interactions in Preventing Paracetamol-Induced Hepatotoxicity


Abstract

Our study aimed to test the potential of Citrus oils in protecting against paracetamol (PAR)-induced hepatotoxicity. The essential oils of Pineapple sweet orange (OO), Murcott mandarin (MO), Red grapefruit (GO), and Oval kumquat (KO) were investigated using gas chromatography coupled with mass spectrometry (GC/MS). Twenty-seven compounds were identified, with monoterpene hydrocarbons being abundant class. d-Limonene had the highest percentage (92.98 %, 92.82 %, 89.75 %, and 94.46 % in OO, MO, GO, and KO, respectively). Hierarchical cluster analysis (HCA) and principal components analysis (PCA) revealed that octanal, linalool, germacrene D, and d-limonene were the principal discriminatory metabolites that segregated the samples into three distinct clusters. In vitro antioxidant capacities were ranged from 1.2–12.27, 1.79–5.91, and 235.05–585.28 μM Trolox eq/mg oil for 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic (ABTS), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC), respectively. In vivo, citrus oils exhibited a significant reduction in alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and nitric oxide (NO). Additionally, there was an increase in glutathione reductase (GSH), and the liver architecture was nearly normal. Molecular docking revealed that d-limonene exhibited a good inhibitory interaction with cytochrome P450 (CYP450) isoforms 1A2, 3A4, and 2E1, with binding energies of −6.17, −4.51, and −5.61 kcal/mol, respectively.

Two New Eudesmane‐Type Sesquiterpene from Clonostachys sp. Y6‐1and Their Cytotoxic Activity

Two New Eudesmane-Type Sesquiterpene from Clonostachys sp. Y6-1and Their Cytotoxic Activity


Abstract

Two undescribed eudesmane-type sesquiterpenoids together with four known compounds were isolated from Clonostachys sp. Y6-1 associated. Their chemical structures were unambiguously determined by NMR, mass spectrometry, and 13C-NMR calculation as well as DP4+ probability analyses. The absolute configurations of compounds 1 and 2 were determined by ECD calculation and X-ray single-crystal diffraction methods. Furthermore, all isolates were evaluated for in vitro cytotoxic activities against MCF-7, HCT-116, MDA-MB-231, and SW620 cancer cells. Among them, bioactivity evaluation of compound 5 revealed that weak activity (IC50=66.55±0.82 μM) against SW620.

Analysis of Quinolinequinone Analogs with Promising Cytotoxic Activity against Breast Cancer

Analysis of Quinolinequinone Analogs with Promising Cytotoxic Activity against Breast Cancer


Abstract

It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones (AQQ1-5) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones (AQQ2-5) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3, in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ (AAQ2) have been studied.

Structurally Diverse Metabolites from the Marine‐Derived Streptomyces sp. DS‐27 Based on Two Different Culture Conditions

Structurally Diverse Metabolites from the Marine-Derived Streptomyces sp. DS-27 Based on Two Different Culture Conditions


Abstract

Nine new compounds, including streptothiomycin A−E (15), two cyclopentenones (6, 7), one α-pyrone (8), wailupemycin Q (20), along with sixteen known compounds were identified from a rhizosphere strain Streptomyces sp. DS-27 derived from the marine cordgrass Spartina alterniflora under two different culture conditions. All of the structures were elucidated by extensive analysis of 1D/2D NMR and HR-ESI-MS data. The absolute configurations were determined by NOESY analysis, ECD, specific rotation and GIAO NMR calculations, and DP4+ probability analysis. Bioactivity investigation showed that compounds 5 and 7 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner, which indicates their anti-inflammatory potential.

Comprehensive Study of the Physicochemical Properties of Royal Jelly from Various Regions of Türkiye

Comprehensive Study of the Physicochemical Properties of Royal Jelly from Various Regions of Türkiye**


Abstract

This study analysed some physicochemical and quality parameters of 176 royal jelly (RJ) samples from different regions of Türkiye, collected over different years and seasons. According to the obtained results, the moisture percentage varied between 47.36 % and 69.58 %, with no statistically significant differences seen across various seasons and areas (p>0.05). The average value of 10-hydroxy-2-decenoic acid (10-HDA), which varies according to factors such as season, region, and year, was determined to be 2.32 %. It was also seen that this value was close to the international standard. The values of total acidity ranged from 28–58 mL 1 N NaOH/100 g. Furthermore, statistical significance (p<0.001) was observed for the year-region interaction in relation to 10-HDA and total acidity. The pH measurement results for all samples confirmed the acidic nature of the samples and resulted in a range between 3.45 and 3.80. And the pH variability was also found to be statistically significant for years (p=0.002) and regions (p=0.011). Finally, the correlation analysis between moisture (%), 10-HDA (%), total acidity, and pH revealed no statistically significant or strong differences. This comprehensive study, supported by statistical analyses, is thought to be a useful reference for future research on RJ.

Research on the Chemical Constituents against Alzheimer’s Disease of the Fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino

Research on the Chemical Constituents against Alzheimer's Disease of the Fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino


Abstract

Physalis alkekengi L. var. franchetii (Mast.) Makino (PA) is a natural plant which is utilised as a traditional herbal medicine. It has properties that make it effective against inflammation and free radical damage. In the present study, the major constituents of four extraction parts of the fruits of PA (PAF) were investigated by combining ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The mice model of Alzheimer's disease (AD) induced by aluminum chloride (AlCl3) combined with D-galactose (D-gal) was established to comprehend the mechanism behind PAF's anti-AD activity from both behavioural and pathological perspectives. The results showed that four extraction parts of PAF (PAFE) had favorable anti-AD effects and the ethyl acetate (EA) group showed the best activity. UPLC-Q-TOF-MS analysis identified Physalin B, Nobiletin and Caffeic acid as the main anti-AD active constituents in EA extract. This study reveals that PAF can reduce neuroinflammatory damage by inhibiting p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway, which is the theoretical basis for clinical development and utilization of PAF in AD therapy.

Nutritional Composition Profiles and Quality Evaluation of Different Cultivars of Asparagus Officinalis with Potential as Functional Foods and Health‐Care Products

Nutritional Composition Profiles and Quality Evaluation of Different Cultivars of Asparagus Officinalis with Potential as Functional Foods and Health-Care Products


Abstract

Asparagus officinalis is a health-care vegetable with homology value of medicine and food. The quality of A. officinalis is greatly different from various cultivars. It is essential to reveal the relationship between the variety and quality. This study investigated six nutritional compositions in ten A. officinalis cultivars, including amino acid, mineral substance, carbohydrate, vitamin C, protein and total sugar. Five chemometrics methods were further employed to evaluate their quality. The results consistently showed that ten varieties were divided into three grades as nutritional composition differences. HuaMiaoF1, JinGuan and FeiCuiMingZhu were grouped into cluster3 with the best quality, and Atlas and Jersey Giant were grouped into cluster1 with the lowest quality. Therefore, HuaMiaoF1, JinGuan and FeiCuiMingZhu can be suggested as good raw materials for medicine, food and health-care products industries. Meanwhile, the comprehensive application of five chemometrics methods was confirmed as a reliable methodology for quality evaluation of A. officinalis.

Design, Synthesis, Molecular Modelling and in Vitro Evaluation of Indolyl Ketohydrazide‐Hydrazone Analogs as Potential Pancreatic Lipase Inhibitors

Design, Synthesis, Molecular Modelling and in Vitro Evaluation of Indolyl Ketohydrazide-Hydrazone Analogs as Potential Pancreatic Lipase Inhibitors


Abstract

Inhibition of Pancreatic lipase (PL) is considered to be a promising target for the management of obesity, owing to its crucial role in the digestion of dietary triglycerides. A series of 31 indolyl ketohydrazide-hydrazone analogs (5 aacm) were designed, synthesized and evaluated for their PL inhibitory potential. The analogs were designed using molecular modelling studies. The designed analogs were then synthesized by condensation of indolyl oxoacetohydrazide with various substituted benzaldehydes. All the synthesized analogs showed PL inhibitory activity in the range of 4.13–48.35 μM, as compared with orlistat (0.86±0.09 μM). The most potent analog 5 bi (IC50=4.13±0.95 μM) was found to show a competitive type of inhibition with Ki value of 0.725 μM. Additionally, the molecular docking study proved the binding of analog 5 bi at the active site of PL (PDB ID: 1LPB) with MolDock score of −141.279 kcal/mol. It also exhibited various interactions with the key amino acids namely Phe77, Phe215, Tyr114, Ser152, Arg256, His263, etc. Furthermore, the protein-ligand complex of analog 5 bi was found to be stable in molecular dynamics simulation for 100 ns with RMSD of less than 3.2 and 4 Å for the protein and ligand, respectively. The current work hereby provides a basis for the potential role of indolyl ketohydrazide-hydrazone analogs in PL inhibition and further optimization could result in the generation of new leads as anti-obesity agents.

Citrus Honeys from Three Different Regions of Turkey: HPLC‐DAD Profiling and in Vitro Enzyme Inhibition, Antioxidant, Anti‐Inflammatory and Antimicrobial Properties with Chemometric Study

Citrus Honeys from Three Different Regions of Turkey: HPLC-DAD Profiling and in Vitro Enzyme Inhibition, Antioxidant, Anti-Inflammatory and Antimicrobial Properties with Chemometric Study


Abstract

The objectives of the present study are to compare the phenolic profiles and biological activities of 15 citrus honey samples from three different locations in Turkey using a chemometric approach. The HPLC-DAD analysis was used to determine phenolic profiles. Nineteen phenolic compounds were identified. Gallic acid (107.14–717.04 μg/g) was recorded as the predominant compound. AF (Antalya-Finike) had the highest antioxidant activity in ABTS⋅+ (IC50: 18.01±0.69 mg/mL), metal chelating (IC50: 6.20±0.19 mg/mL) and CUPRAC (A0.50: 12.05±0.68 mg/mL) assays, while it revealed the best anti-inflammatory activity against COX-2 (17.28±0.22 %) and COX-1 (43.28±0.91 %). AM (Antalya-Manavgat) was the most active in β-carotene-linoleic acid (IC50: 10.05±0.19 mg/mL), anti-urease (38.90±0.69 %), anti-quorum sensing and antimicrobial activities. AKO1 (Adana-Kozan-1) in DPPH⋅ (IC50: 34.25±0.81 mg/mL) assay, AKU1 (Antalya-Kumluca-1) in tyrosinase inhibition activity (37.73±0.38 %) assay, AKU2 (Antalya-Kumluca-2) in AChE (10.55±0.63 %) and BChE (9.18±0.45 %) inhibition activity assays showed the best activity. Chemometric tools were applied to the phenolic compositions and biological properties. PCA and HCA ensured that 15 citrus honey samples were grouped into 3 clusters. The results showed that myricetin, kaempferol, vanillin, protocatechuic acid, rosmarinic acid, rutin, vanillic acid, gallic acid, catechin and p-hydroxyphenyl acetic acid are phenolic compounds that can be used in the classification of citrus honeys.