Analysis of Dynamical Peculiarities in Nanoalloys at Subsystems Level: Dynamical Degrees of Freedom, Temperature Differences, and the Chameleon Effect

Analysis of Dynamical Peculiarities in Nanoalloys at Subsystems Level: Dynamical Degrees of Freedom, Temperature Differences, and the Chameleon Effect

Vibrational temperatures of pure and mixed 13-atom Ni/Al clusters as a function of the cluster composition and internal energy.


Abstract

A novel analysis of the dynamical behavior of nanoalloy systems, as represented by model Ni/Al 13-atom clusters, over a broad range of energies that cover the stage-wise transition of the systems from their solid-like to liquid-like state is presented. Conceptually, the analysis is rooted in partitioning the systems into judiciously chosen subsystems and characterizing the latter in terms of subsystem-specific dynamical descriptors that include dynamical degrees of freedom, root-mean-square bond-length fluctuation, and element-specific subsystem temperature. The analysis reveals a host of intriguing new peculiarities in the dynamical behavior of the Ni/Al 13-mers, among which are what we call the chameleon effect and the difference in the temperatures of the Ni and Al subsystems at high energies, a difference that strongly depends on the cluster composition and also changes with energy. These do not have an analog in pure Ni13 and Al13 and are explained in terms of the coupled effects of the difference between the masses of the Ni and Al atoms (the mass effect) and of the difference in the anharmonicity of the overall interaction potential as experienced by the Ni and Al subsystems of the clusters (the potential effect).

Conformal Coverage of ZnO Nanowire Arrays by ZnMnO3: Room‐temperature Photodeposition from Aqueous Solution

Conformal Coverage of ZnO Nanowire Arrays by ZnMnO3: Room-temperature Photodeposition from Aqueous Solution

Crystalline–amorphous biphasic ZnMnO3 was photodeposited by a one-step, room-temperature process from an aqueous precursor solution onto ZnO nanowires. The specific morphology of the photodeposit and its homogeneous dispersion at the nanowire surface give rise to an electrode architecture, where ZnMnO3 shells act as an electroactive, pseudocapacitive phase in aqueous electrolytes.


Abstract

Compositionally and structurally complex semiconductor oxide nanostructures gain importance in many energy-related applications. Simple and robust synthesis routes ideally complying with the principles of modern green chemistry are therefore urgently needed. Here we report on the one-step, room-temperature synthesis of a crystalline–amorphous biphasic ternary metal oxide at the ZnO surface using aqueous precursor solutions. More specifically, conformal and porous ZnMnO3 shells are photodeposited from KMnO4 solution onto immobilized ZnO nanowires acting not only as the substrate but also as the Zn precursor. This water-based, low temperature process yields ZnMnO3/ZnO composite electrodes featuring in 1 M Na2SO4 aqueous solution capacitance values of 80–160 F g−1 (as referred to the total mass of the porous film i. e. the electroactive ZnMnO3 phase and the ZnO nanowire array). Our results highlight the suitability of photodeposition as a simple and green route towards complex functional materials.

Ag‐Doped Free‐Standing 2D TiO2 Sheets: Electronic, Optical, Magnetic, and Self‐Healing Behaviour

Beyond a critical doping level, Ag - 2D TiO2 sheets (ATO) are deemed to be a flexible transparent conductor, useful for visible-range functional photonic/optoelectronic devices/sensors, sunlight-sensitive catalysis, and light-activated resistive switching. Due to the lack of control of surface energy which often leads to the formation of structural defects and even dimensionality crossover (2D to 0D) of materials during doping reaction, it is challenging to obtain ATO with a controlled doping level. Gauging the urgency, therefore we report the surface energy-controlled synthesis of ATO employing liquid phase exfoliation of TiO2 and subsequent hydrothermal Ag-doping in the presence of Hexamethylenetetramine (HMTA). Electron microscopy and atomic force microscopy reveal ATO sheets with large lateral dimensions. 6-fold, 4-fold, and strain-mediated crystallographic phases of 2D ATO have been revealed by high-resolution electron imaging. Successful tuning of the band gap down to ~ 2 eV with Ag doping up to ~ 10% is obtained. Synthesized 2D ATO have been investigated for their electrical, optical, optoelectronic, photoluminescence, and ferromagnetic behaviour. Visible light-sensitive thermally/structurally robust semiconductor/conductor via tuneable doping will pave the way for their flexible as well as wearable device applications. Self-healing effect of AFM tip-generated mechanical stress has also been demonstrated.

Ambient Pressure X‐ray Photoelectron Spectroscopy Study of Oxidation Phase Transitions on Cu(111) and Cu(110)

Ambient Pressure X-ray Photoelectron Spectroscopy Study of Oxidation Phase Transitions on Cu(111) and Cu(110)

Phase diagrams show the transitions of O/Cu→Cu2O→CuO on both Cu(111) and Cu(110) surfaces during the oxidation process. The oxygen adsorption induced c(6×2)-O reconstruction provides a relatively stable surface oxide layer on Cu(110), resulting a higher oxidation resistance than Cu(111).


Abstract

The surface structure effect on the oxidation of Cu has been investigated by performing ambient-pressure X-ray photoelectron spectroscopy (APXPS) on Cu(111) and Cu(110) surfaces under oxygen pressures ranging from 10−8 to 1 mbar and temperatures from 300 to 750 K. The APXPS results show a subsequential phase transition from chemisorbed O/Cu overlayer to Cu2O and then to CuO on both surfaces. For a given temperature, the oxygen pressure needed to induce initial formation of Cu2O on Cu(110) is about two orders of magnitude greater than that on Cu(111), which is in contrast with the facile formation of O/Cu overlayer on clean Cu(110). The depth profile measurements during the initial stage of Cu2O formation indicate the distinct growth modes of Cu2O on the two surface orientations. We attribute these prominent effects of surface structure to the disparities in the kinetic processes, such as the dissociation and surface/bulk diffusion over O/Cu overlayers. Our findings provide new insights into the kinetics-controlled process of Cu oxidation by oxygen.

Sequence‐Specific Relay Recognition of Multiple Anions: An Interplay between Proton Donors and Acceptors

Ratiometric detection of analyte is highly deserving since the technique is free from background correction. This work reports the design and synthesis of a pyridine-end oligo p-phenylenevinylene (OPV) derivative, 1 and its application in ratiometric dual-mode (both colorimetric and fluorogenic) recognition of dual anions, bisulphate (LOD= 12.5 ppb) followed by fluoride (LOD= 18.2 ppb) by sequence-specific relay (SPR) technique. The colorless probe turns brown with addition of bisulphate and again becomes colorless with the sequential addition of fluoride ion. In addition to such naked-eye color change, interestingly the ratiometric spectroscopic signals are reversible and evidently, the probe is reusable for several cycles. Besides, in presence of bisulphate, the protonated probe molecules, owing to their larger amphiphilic characteristics, formed self-assembled nanostructures. In addition to colorimetric and fluorescent changes, 1H NMR titration and systematic DFT study evidently establish the underneath proton transfer mechanisms. Such reusable OPV-based chemosensor particularly with the capability of naked-eye recognition of dual anions using the SPR technique is seminal and possibly the first report in the literature.

Aza‐Michael Addition in Explicit Solvent: A Relative Energy Gradient – Interacting Quantum Atoms Study

Aza-Michael additions are key reactions in organic synthesis. We investigate, from a theoretical and computational point of view, several examples ranging from weak to strong electrophiles in dimethylsulfoxide treated as explicit solvent. We use the REG-IQA method, which is a quantum topological energy decomposition (Interacting Quantum Atoms, IQA) coupled to a chemical-interpretation calculator (Relative Energy Gradient, REG). We focus on the rate-limiting addition step in order to unravel the different events taking place in this step, and understand the influence of solvent on the reaction, with an eye on predicting the Mayr electrophilicity. For the first time a link is established between an REG-IQA analysis and experimental values.

Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons

Nanoscale quantum plasmon is an important technology that restricts the application of optics, electricity, and graphene photoelectric devices. Establishing a structure-effect relationship between the structure of graphene nanoribbons (GNRs) under stress regulation and the properties of plasmons is a key scientific issue for promoting the application of plasmons in micro-nano photoelectric devices. In this study, zigzag graphene nanoribbon (Z-GNR) and armchair graphene nanoribbon (A-GNR) models of specific widths were constructed, and density functional theory (DFT) was used to study their lattice structure, energy band, absorption spectrum, and plasmon effects under different stresses. The results showed that the Z-GNR band gap decreased with increasing stress, and the A-GNR band gap changed periodically with increasing stress. The plasmon effects of the A-GNRs and Z-GNRs appeared in the visible region, whereas the absorption spectrum showed a redshift trend, indicating the range of the plasmon spectrum also underwent significant changes. This study provides a theoretical basis for the application of graphene nanoribbons in the field of optoelectronics under strain-engineering conditions.

Voltage‐ and Power‐Conversion Performance of Bi‐functional ZrO2 : Er3+/ Yb3+ Assisted and Co‐sensitized Dye Sensitized Solar Cells for Internet of Things Applications

Voltage- and Power-Conversion Performance of Bi-functional ZrO2 : Er3+/ Yb3+ Assisted and Co-sensitized Dye Sensitized Solar Cells for Internet of Things Applications

A bifunctional ZrO2  : Er3+/Yb3+ co-sensitized dye-sensitized solar cell shows a power conversion efficiency of 12.35 %. Six cells connected in series gave a VOC of 4.52 V, which is sufficient to power up internet of things (IoT) devices.


Abstract

Giant power conversion efficiency is achieved by using bifunction ZrO2 : Er3+/Yb3+assisted co-sensitised dye-sensitized solar cells. The evolution of the crystalline structure and its microstructure are examined by X-ray diffraction, scanning electron microscopy studies. The bi-functional behaviour of ZrO2 : Er3+/Yb3+ as upconversion, light scattering is confirmed by emission and diffused reflectance studies. The bi-function ZrO2 : Er3+/Yb3+ (pH=3) assisted photoanode is co-sensitized by use of N719 dye, squaraine SPSQ2 dye and is sandwiched with Platinum based counter electrode. The fabricated DSSC exhibited a giant power conversion efficiency of 12.35 % with VOC of 0.71 V, JSC of 27.06 mA/cm2, FF of 0.63. The results, which motivated the development of a small DSSC module, gave 6.21 % and is used to drive a tiny electronic motor in indoor and outdoor lighting conditions. Small-area DSSCs connected in series have found that a VOC of 4.52 V is sufficient to power up Internet of Things (IoT) devices.

Direct Experimental Observations of Ion Distributions during Overcharging at the Muscovite‐Water Interface by Adsorption of Rb+ and Halides (Cl−, Br−, I−) at High Salinity

Direct Experimental Observations of Ion Distributions during Overcharging at the Muscovite-Water Interface by Adsorption of Rb+ and Halides (Cl−, Br−, I−) at High Salinity

Classical electric double layer (EDL) models fail to describe ion distributions at charged solid-liquid interfaces at high salinity, where non-classical effects such as ion-ion correlations play a role. Here, the authors report the direct experimental determination of interfacial cation and anion distributions yielding new insights into the EDL structure and the associated adsorption isotherm data in the overcharging regime.


Abstract

Classical electric double layer (EDL) models have been widely used to describe ion distributions at charged solid-water interfaces in dilute electrolytes. However, the chemistry of EDLs remains poorly constrained at high ionic strength where ion-ion correlations control non-classical behavior such as overcharging, i. e., the accumulation of counter-ions in amounts exceeding the substrate's surface charge. Here, we provide direct experimental observations of correlated cation and anion distributions adsorbed at the muscovite (001)-aqueous electrolyte interface as a function of dissolved RbBr concentration ([RbBr]=0.01–5.8 M) using resonant anomalous X-ray reflectivity. Our results show alternating cation-anion layers in the EDL when [RbBr]≳100 mM, whose spatial extension (i. e., ~20 Å from the surface) far exceeds the dimension of the classical Stern layer. Comparison to RbCl and RbI electrolytes indicates that these behaviors are sensitive to the choice of co-ion. This new in-depth molecular-scale understanding of the EDL structure during transition from classical to non-classical regimes supports the development of realistic EDL models for technologies operating at high salinity such as water purification applications or modern electrochemical storage.

On The Nature of FeIV=Oaq in Aqueous Media: A DFT analysis

On The Nature of FeIV=Oaq in Aqueous Media: A DFT analysis

Density functional calculations demonstrate that the FeIV=O2+ aq complexes form different analogous complexes according to the pH of the system.


Abstract

FeIV=Oaq is a key intermediate in many advanced oxidation processes and probably in biological systems. It is usually referred to as FeIV=O2+. The pKa's of FeIV=Oaq as derived by DFT are: pKa1=2.37 M06 L/6-311++G(d,p) (SDD for Fe) and pKa2=7.79 M06 L/6-311++G(d,p) (SDD for Fe). This means that in neutral solutions, FeIV=Oaq is a mixture of (H2O)4(OH)FeIV=O+ and (H2O)2(OH)2FeIV=O. The oxidation potential of FeIV=Oaq in an acidic solution, E0{(H2O)5FeIV=O2+/FeIII(H2O)6 3+, pH 0.0} is calculated with and without a second solvation sphere and the recommended value is between 2.86 V (B3LYP/Def2-TZVP, with a second solvation sphere) and 2.23 V (M06 L/Def2-TZVP without a second solvation sphere). This means that FeIV=Oaq is the strongest oxidizing agent formed in systems involving FeVIO4 2− even in neutral media.