Abstract
Seawater electrolysis holds great promise for hydrogen production in the future, while the development of anodic catalysts has been severely hampered by the side-reaction, chloride evolution reaction. In this work, nano-flower-cluster structured CoO@FeSe2/CF catalysts are synthesized via a scalable electrodeposition technique, and the performance is systematically studied. The oxygen evolution reaction (OER) overpotential of CoO@FeSe2/CF is 267 mV at 100 mA cm−2, which is significantly lower than the IrO2 catalyst (435 mV). Additionally, the catalyst shows high selectivity for OER (97.9%) and almost no loss of activity after a durability test for 1100 h. The impressive performance is attributed to the dense rod-like structure with abundant active centers after electrochemical activation and the in-situ generated CoOOH and FeOOH that improves the catalytic activity of the catalyst. The synergistic effect induced by the non-uniform structure endows the catalyst with excellent stability.
This article is protected by copyright. All rights reserved.