Predicting Environmental Risks of Pharmaceuticals from Wholesale Data: An Example from Norway

Abstract

Environmental risk assessment (ERA) of pharmaceuticals relies on available measured environmental concentrations, but often such data are sparse. Predicted environmental concentrations (PECs), calculated from sales weights, are an attractive alternative but often cover only prescription sales. We aimed to rank, by environmental risk in Norway, approximately 200 active pharmaceutical ingredients (APIs) over 2016–2019, based on sales PECs. To assess the added value of wholesale and veterinary data, we compared exposure and risk predictions with and without these additional sources. Finally, we aimed to characterize the persistence, mobility, and bioaccumulation of these APIs. We compared our PECs to available Norwegian measurements, then, using public predicted-no-effect concentrations, we calculated risk quotients (RQs) and appended experimental and predicted persistence and bioaccumulation. Our approach overestimated environmental concentrations compared with measurements for 18 of 20 APIs with comparable predictions and measurements. Seventeen APIs had mean RQs >1, indicating potential risk, while the mean RQ was 2.05 and the median 0.001, driven by sex hormones, antibiotics, the antineoplastic abiraterone, and common painkillers. Some high-risk APIs were also potentially persistent or bioaccumulative (e.g., levonorgestrel [RQ = 220] and ciprofloxacin [RQ = 56]), raising the possibility of impacts beyond their RQs. Exposure and risk were also calculated with and without over-the-counter sales, showing that prescriptions explained 70% of PEC magnitude. Likewise, human sales, compared with veterinary, explained 85%. Sales PECs provide an efficient option for ERA, designed to overestimate compared with analytical techniques and potentially held back by limited data availability and an inability to quantify uncertainty but, nevertheless, an ideal initial approach for identification and ranking of risks. Environ Toxicol Chem 2023;42:2253–2270. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Profile, Tissue Distribution, and Time Trend of Bisphenol Plastic Additives in Freshwater Wildlife of the Pearl River Ecosystem, China

Abstract

Plastic-related contaminants in the environment have attracted increasing attention, with plastic pollution becoming a serious issue globally. The present study investigated the potential bioaccumulation and biotransfer of bisphenol (BP) compounds that are widely added in various products such as plastics and other products in a freshwater ecosystem, China. Among commonly applied 14 BP analogues, bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were predominant, representing 64%–100% of the total concentrations of BPs (ΣBPs) in freshwater wildlife. Both the concentrations and analogue profiles in the fish showed seasonal differences and species dependence. Higher BP concentrations were observed in fish collected during the dry season than the wet season. Higher percentages of non-BPA analogues (e.g., BPS and BPF) were observed in fish collected during the wet season. Pelagic species accumulated notably higher levels of BPs than midwater and bottom species. The liver generally contained the highest ΣBPs, followed successively by the swim bladder, belly fat, and dorsal muscle. The analogue profile also showed some differences among tissues, varying by species and season. Lower ΣBPs but higher percentages of non-BPA analogues were observed in female than male common carp. Time trends of the BPA concentration in fish varied by species, probably related to habitats and diets of the fish. Habitats, feeding behaviors, and trophic transfer may have significant impacts on exposure of wildlife to BPs in natural ecosystems. The BPs did not demonstrate strong potential for bioaccumulation. More research is warranted about metabolism and transgenerational transfer of BPs in wildlife to fully reveal the bioaccumulation and consequently ecological risks of these chemicals in the environment. Environ Toxicol Chem 2023;42:2130–2142. © 2023 SETAC

Reevaluation of 2,3,7,8‐Tetrachlorodibenzo‐p‐Dioxin Equivalency Factors for Dioxin‐Like Polychlorinated Dibenzo‐p‐Dioxins, Polychlorinated Dibenzofurans, and Polychlorinated Biphenyls for Fishes

Abstract

An expert meeting was organized by the World Health Organization (WHO) in 1997 to streamline assessments of risk posed by mixtures of dioxin-like chemicals (DLCs) through development of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) equivalency factors (TEFs) for mammals, birds, and fishes. No reevaluation has been performed for fish TEFs. Therefore, the objective of the present study was to reevaluate the TEFs for fishes based on an updated database of relative potencies (RePs) for DLCs. Selection criteria consistent with the WHO meeting resulted in 53 RePs across 14 species of fish ultimately being considered. Of these RePs, 70% were not available at the time of the WHO meeting. These RePs were used to develop updated TEFs for fishes based on a similar decision process as used at the WHO meeting. The updated TEF for 16 DLCs was greater than the WHO TEF, but only four differed by more than an order of magnitude. Measured concentrations of DLCs in four environmental samples were used to compare 2,3,7,8-TCDD equivalents (TEQs) calculated using the WHO TEFs relative to the updated TEFs. The TEQs for none of these environmental samples differed by more than an order of magnitude. Therefore, present knowledge supports that the WHO TEFs are suitable potency estimates for fishes. However, the updated TEFs pull from a larger database with a greater breadth of data and as a result offer greater confidence relative to the WHO TEFs. Risk assessors will have different criteria in the selection of TEFs, and the updated TEFs are not meant to immediately replace the formal WHO TEFs; but those who value a larger database and increased confidence in TEQs could consider using the updated TEFs. Environ Toxicol Chem 2023;42:2215–2228. © 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Ecotoxicity and Accumulation of Perfluorononanoic Acid in the Fathead Minnow (Pimephales promelas) and an Approach to Developing Protective Thresholds in the Aquatic Environment Through Species Sensitivity Distribution

Abstract

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment. Locations where PFAS-containing aqueous film-forming foam (AFFF) has been used or accidentally released have resulted in persistently high concentrations of PFAS, including in surface water that may be adjacent to release sites. Perfluorooctane sulfonic acid (PFOS) is most frequently measured near AFFF release sites; however, other PFAS are being quantified more frequently and, of those, perfluorononanoic acid (PFNA) is common. The goal of our study was to fill data gaps on PFNA toxicity to freshwater fish using the fathead minnow (Pimephales promelas). We aimed to understand how PFNA may impact apical endpoints following a 42-day exposure to mature fish and a 21-day exposure to second-generation larval fish. Exposure concentrations were 0, 124, 250, 500, and 1000 µg/L for both adult (F0) and larval (F1) generations. The most sensitive endpoint measured was development in the F1 generation at concentrations of ≥250 µg/L. The 10% and 20% effective concentration of the tested population for the F1 biomass endpoint was 100.3 and 129.5 µg/L, respectively. These data were collated with toxicity values from the primary literature on aquatic organisms exposed to PFNA for subchronic or chronic durations. A species sensitivity distribution was developed to estimate a screening-level threshold for PFNA. The resulting hazard concentration protective of 95% of the freshwater aquatic species was 55 µg PFNA/L. Although this value is likely protective of aquatic organisms exposed to PFNA, it is prudent to consider that organisms experience multiple stressors (including many PFAS) simultaneously; an approach to understand screening-level thresholds for PFAS mixtures remains an uncertainty within the field of ecological risk assessment. Environ Toxicol Chem 2023;42:2229–2236. © 2023 SETAC

Addressing Uncertainties in Potential Human Dietary Exposure to Mercury in the Watershed of the South River, Virginia, USA

Abstract

Much has been published about the harmful effects to humans when they are exposed to mercury (Hg) in environmental media including their diet. Numerous health advisories around the world, including for the South River, Virginia, USA, warn against consumption of Hg-contaminated fish species. Fewer studies have focused on other dietary sources of Hg and how to advise humans potentially exposed by this route. In undertaking a human health risk assessment for the former DuPont facility in Waynesboro, Virginia, USA, and the nearby South River and surrounding watershed, the available published information on Hg exposure through dietary consumption of nonfish items proved unsuitable for extrapolation purposes. In response, an evaluation of potential Hg exposure to residents who might consume livestock, poultry, and wildlife raised or collected in the South River watershed was conducted to inform the risk-assessment process. The newly collected data on Hg in these dietary items filled an important data gap, suggesting that there was little concern about limiting dietary consumption for most items. These results were communicated to the public through print and electronic platforms, in the form of “fact sheets.” We describe the studies and actions taken to better explain the potential for human exposures to Hg in nonfish dietary items from a portion of the watershed of the South River. Environ Toxicol Chem 2023;42:2237–2252. © 2023 SETAC

Uptake of Pharmaceuticals by Crops: A Systematic Review and Meta‐analysis

Abstract

Studies on the uptake of pharmaceuticals from soils into crops were first conducted in the 2000s. Since then a wealth of such data has been generated, but to the best of our knowledge, these studies have not been systematically reviewed. We present a quantitative, systematic review of empirical data on the uptake of pharmaceuticals into crops. We developed a custom-made relational database on plant uptake of pharmaceuticals that contained details of the experimental design and associated results from 150 articles, spanning 173 pharmaceuticals, 78 study crops, and 8048 unique measurements. Analysis of the data in the database showed clear trends in experimental design, with lettuce being the most studied crop and carbamazepine and sulfamethoxazole being the most studied pharmaceuticals. Pharmaceutical properties were found to create the greatest range in uptake concentrations of any single variable studied. Uptake concentrations were also found to vary between crops, with relatively high uptake concentrations identified in cress, lettuce, rice, and courgette crops. An understanding of the influence of soil properties on pharmaceutical uptake was limited by a lack of information on key soil properties across the published literature. The data comparisons were inhibited by differences in quality of the different studies. Moving forward, a framework for best practice in this field is needed to maximize the value and further applications of the data produced. Environ Toxicol Chem 2023;42:2091–2104. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

An Assessment of the Toxicity of Pesticide Mixtures in Periphyton from Agricultural Streams to the Mayfly Neocloeon triangulifer

Abstract

Residual concentrations of pesticides are commonly found outside the intended area of application in Ontario's surface waters. Periphyton are a vital dietary component for grazing organisms in aquatic ecosystems but can also accumulate substantial levels of pesticides from the surrounding water. Consequently, grazing aquatic organisms are likely subjected to pesticide exposure through the consumption of pesticide-contaminated periphyton. The objectives of the present study were to determine if pesticides partition into periphyton in riverine environments across southern Ontario and, if so, to determine the toxicity of pesticides in periphyton when fed to the grazing mayfly Neocloeon triangulifer. Sites with low, medium, and high pesticide exposure based on historic water quality monitoring data were selected to incorporate a pesticide exposure gradient into the study design. Artificial substrate samplers were utilized to colonize periphyton in situ, which were then analyzed for the presence of approximately 500 pesticides. The results demonstrate that periphyton are capable of accumulating pesticides in agricultural streams. A novel 7-day toxicity test method was created to investigate the effects of pesticides partitioned into periphyton when fed to N. triangulifer. Periphyton collected from the field sites were fed to N. triangulifer and survival and biomass production recorded. Survival and biomass production significantly decreased when fed periphyton colonized in streams with catchments dominated by agricultural land use (p < 0.05). However, the relationship between pesticide concentration and survival or biomass production was not consistent. Using field-colonized periphyton allowed us to assess the dietary toxicity of environmentally relevant concentrations of pesticide mixtures; however, nutrition and taxonomic composition of the periphyton may vary between sites. Environ Toxicol Chem 2023;42:2143–2157. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Evaluation of Toxicity and Genotoxicity of Concrete Cast with Steel Slags Using Higher Terrestrial Plants

Abstract

The potential impact of concrete mixtures containing steel slag (SS) as a partial replacement of natural aggregates (NA) on the terrestrial ecosystem was assessed using a battery of plant-based bioassays. Leaching tests were conducted on four concrete mixtures and one mixture containing only NA (reference concrete). Leachates were tested for phytotoxicity using seeds of Lepidium sativum, Cucumis sativus, and Allium cepa. Emerging seedlings of L. sativum and A. cepa were used to assess DNA damage (comet test). The genotoxicity of the leachates was also analyzed with bulbs of A. cepa using the comet and chromosome aberration tests. None of the samples caused phytotoxic effects. On the contrary, almost all the samples supported the seedlings; and two leachates, one from the SS-containing concrete and the other from the reference concrete, promoted the growth of C. sativus and A. cepa. The DNA damage of L. sativum and A. cepa seedlings was significantly increased only by the reference concrete sample. In contrast, the DNA damage in A. cepa bulbs was significantly enhanced by the reference concrete but also by that of a concrete sample with SS. Furthermore, all leachates caused an increase in chromosomal aberrations in A. cepa bulbs. Despite some genotoxic effects of the concrete on plant cells, the partial replacement of SS does not seem to make the concrete more hazardous than the reference concrete, suggesting the potential use of SS as a reliable recycled material. Environ Toxicol Chem 2023;42:2193–2200. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.