Abstract
Predicting quasicrystal structures is a multifaceted problem that can involve predicting a previously unknown phase, predicting the structure of an experimentally observed phase, or predicting the thermodynamic stability of a given structure. We survey the history and current state of these prediction efforts with a focus on methods that have improved our understanding of the structure and stability of known metallic quasicrystal phases. Advances in the structural modeling of quasicrystals, along with first principles total energy calculation and statistical mechanical methods that enable the calculation of quasicrystal thermodynamic stability, are illustrated by means of cited examples of recent work.