We demonstrate a novel electrocatalytic strategy for selectively hydrogenating alkynols to corresponding high-value-added alkenols under ambient temperature and pressure. In acidic solution, the as-fabricated Cu3P nanoarrays on Cu foam exhibit high alkynol conversion, high alkenol selectivity, and superior long-term stability at an industrial-level current density.
Comprehensive Summary
Alkenols are important intermediates for the industrial manufacture of various commodities and fine chemicals. At present, alkenols are produced via thermocatalytic semihydrogenation of corresponding alkynols using precious metal Pd-based catalysts in pressurized hydrogen atmosphere. In this work, we highlight an efficient electrocatalytic strategy for selectively reducing alkynols to alkenols under ambient conditions. Using 2-methyl-3-butyn-2-ol as a model alkynol, Cu3P nanoarrays anchored on Cu foam remarkably deliver an industrial-level partial current density of 0.79 A·cm–2 and a specific selectivity of 98% for 2-methyl-3-buten-2-ol in acidic solution. Over a 40-runs stability test, Cu3P nanoarrays maintain 90% alkynol conversion and 90% alkenol selectivity. Even in a large two-electrode flow electrolyser, the single-pass alkynol conversion and alkenol selectivity of Cu3P nanoarrays exceed 90%. Moreover, this selective electrocatalytic hydrogenation approach is broadly feasible for the production of various water-soluble alkenols. Electrochemical analyses, theoretical simulation and electrochemical in-situ infrared investigations together reveal that exothermic alkynol hydrogenation, facile alkenol desorption and formation of active H on Cu3P surfaces account for the excellent electrocatalytic performance.