La−TM−Si electrides catalysts for ammonia synthesis were compared and different catalytic mechanisms were shown for LaFe/CoSi and LaMnSi. A dual-site relay catalytic mechanism was demonstrated for LaCoSi and LaFeSi, breaking the scaling relations. In contrast, all the elementary steps were confined to Mn sites on LaMnSi, which resulted in inferior catalytic activity.
Abstract
Intermetallic electrides have recently drawn considerable attention due to their unique electronic structure and high catalytic performance for the activation of inert chemical bonds under mild conditions. However, the relationship between electride (anionic) electron abundance and catalytic performance is undefined; the key deciding factor for the performance of intermetallic electride catalysts remains to be addressed. Here, the secret behind electride catalysts La−TM−Si (TM=Co, Fe and Mn) with the same crystal structure but different anionic electrons was studied. Unexpectedly, LaCoSi with the least anionic electrons showed the best catalytic activity. The experiments and first-principles calculations showed that the electride anions promote the N2 dissociation which alters the rate-determining step (RDS) for ammonia synthesis on the studied electrides. Different reaction mechanisms were found for La−TM−Si (TM=Fe, Co) and LaMnSi. A dual-site module was revealed for LaCoSi and LaFeSi, in which transition metals were available for the N2 dissociation and La accelerates the NH x formation, respectively, breaking the Sabatier scaling relation. For LaMnSi, which is the most efficient for the N2 activation, the activity for ammonia synthesis is limited and confined by the scaling relations. The findings provide new insight into the working mechanism of intermetallic electrides.