Structure‐Activity Relationships, Tolerability and Efficacy of Microtubule‐Active 1,2,4‐Triazolo[1,5‐a]pyrimidines as Potential Candidates to Treat Human African Trypanosomiasis

Structure-Activity Relationships, Tolerability and Efficacy of Microtubule-Active 1,2,4-Triazolo[1,5-a]pyrimidines as Potential Candidates to Treat Human African Trypanosomiasis**

We describe the structure-activity relationships, tolerability, and efficacy of microtubule-targeting 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) against the neglected pathogen, Trypanosoma brucei – the causative agent of human African trypanosomiasis (HAT). We identified viable candidates that reduce blood parasitemia within 24 h and extend the survival of T. brucei-infected mice compared to control animals. This evidence suggests that TPDs may be potential alternative treatments for HAT.


Abstract

Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT-active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies. Treatment of T. brucei-infected mice with tolerable doses of TPDs significantly decreased blood parasitemia within 24 h. Further, two once-weekly doses at 10 mg/kg of a candidate TPD significantly extended the survival of infected mice relative to infected animals treated with vehicle. Further optimization of dosing and/or the dosing schedule of these CNS-active TPDs may provide alternative treatments for human African trypanosomiasis.

Back in Person: Frontiers in Medicinal Chemistry 2023

Back in Person: Frontiers in Medicinal Chemistry 2023

The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). In this conference report, we review the highlights of the 38 lectures and more than 100 posters that were presented during this outstanding meeting.


Abstract

The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). Fortunately, after being cancelled in 2020 and two years (2021–2022) of entirely virtual meetings, due to the COVID-19 pandemic, the FiMC could be held in a face-to-face format again. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh), the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (DPhG), together with the Division of Medicinal Chemistry of the Austrian Chemical Society (GÖCH), the Austrian Pharmaceutical Society (ÖPhG), and a local organization committee from the University of Vienna headed by Thierry Langer, the meeting brought together 260 participants from 21 countries. The program included 38 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 102 posters were presented in two highly interactive poster sessions.

Off/on Switching of Electric Current as a Strategy for One‐Pot Synthesis of Bromoarylpyridines by Cross‐Coupling/ C−H Bromination

Off/on Switching of Electric Current as a Strategy for One-Pot Synthesis of Bromoarylpyridines by Cross-Coupling/ C−H Bromination


Abstract

An “OFF/ON” electric current switching protocol was developed as a new strategy for one-pot organic synthesis. Suzuki-Miyaura coupling of 2-bromopyridines with arylboronic acids in an electrochemical cell was performed without applying an electric current, and subsequently, the Pd-catalyzed electrochemical C−H bromination was conducted using the already-present Pd catalyst to obtain 2-(2-bromoaryl)pyridines as products. The one-pot synthesis of bromoarenes can also be achieved without adding an external Br source in the second step. Furthermore, an OFF/ON/OFF two-times switching protocol also realized the formation of an N-containing teraryl derivative.