Educational and Psychological Measurement, Ahead of Print.
Identifying items with differential item functioning (DIF) in an assessment is a crucial step for achieving equitable measurement. One critical issue that has not been fully addressed with existing studies is how DIF items can be detected when data are multilevel. In the present study, we introduced a Lord’s Wald [math] test-based procedure for detecting both uniform and non-uniform DIF with polytomous items in the presence of the ubiquitous multilevel data structure. The proposed approach is a multilevel extension of a two-stage procedure, which identifies anchor items in its first stage and formally evaluates candidate items in the second stage. We applied the Metropolis–Hastings Robbins–Monro (MH-RM) algorithm to estimate multilevel polytomous item response theory (IRT) models and to obtain accurate covariance matrices. To evaluate the performance of the proposed approach, we conducted a preliminary simulation study that considered various conditions to mimic real-world scenarios. The simulation results indicated that the proposed approach has great power for identifying DIF items and well controls the Type I error rate. Limitations and future research directions were also discussed.
Author Archives: Sijia Huang
An Explanatory Multidimensional Random Item Effects Rating Scale Model
Educational and Psychological Measurement, Ahead of Print.
Random item effects item response theory (IRT) models, which treat both person and item effects as random, have received much attention for more than a decade. The random item effects approach has several advantages in many practical settings. The present study introduced an explanatory multidimensional random item effects rating scale model. The proposed model was formulated under a novel parameterization of the nominal response model (NRM), and allows for flexible inclusion of person-related and item-related covariates (e.g., person characteristics and item features) to study their impacts on the person and item latent variables. A new variant of the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm designed for latent variable models with crossed random effects was applied to obtain parameter estimates for the proposed model. A preliminary simulation study was conducted to evaluate the performance of the MH-RM algorithm for estimating the proposed model. Results indicated that the model parameters were well recovered. An empirical data set was analyzed to further illustrate the usage of the proposed model.
Random item effects item response theory (IRT) models, which treat both person and item effects as random, have received much attention for more than a decade. The random item effects approach has several advantages in many practical settings. The present study introduced an explanatory multidimensional random item effects rating scale model. The proposed model was formulated under a novel parameterization of the nominal response model (NRM), and allows for flexible inclusion of person-related and item-related covariates (e.g., person characteristics and item features) to study their impacts on the person and item latent variables. A new variant of the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm designed for latent variable models with crossed random effects was applied to obtain parameter estimates for the proposed model. A preliminary simulation study was conducted to evaluate the performance of the MH-RM algorithm for estimating the proposed model. Results indicated that the model parameters were well recovered. An empirical data set was analyzed to further illustrate the usage of the proposed model.