Volume 37, Issue 7, October 2023, Page 1410-1427
.
Outcomes and predictors of stress among Turkish family caregivers of patients with acquired brain injury
.
Perspective taking deficits and their relationship with theory of mind abilities in patients with relapsing-remitting multiple sclerosis (RRMS)
.
Sensitivity of memory subtests and learning slopes from the ADAS-Cog to distinguish along the continuum of the NIA-AA Research Framework for Alzheimer’s Disease
.
Development, validity, and reliability of Neural Circuits Questionnaire (NCQ)
.
Are older adults susceptible to visual distraction when targets and distractors are spatially separated?
.
The NEAT Equating Via Chaining Random Forests in the Context of Small Sample Sizes: A Machine-Learning Method
Educational and Psychological Measurement, Volume 83, Issue 5, Page 984-1006, October 2023.
The part of responses that is absent in the nonequivalent groups with anchor test (NEAT) design can be managed to a planned missing scenario. In the context of small sample sizes, we present a machine learning (ML)-based imputation technique called chaining random forests (CRF) to perform equating tasks within the NEAT design. Specifically, seven CRF-based imputation equating methods are proposed based on different data augmentation methods. The equating performance of the proposed methods is examined through a simulation study. Five factors are considered: (a) test length (20, 30, 40, 50), (b) sample size per test form (50 versus 100), (c) ratio of common/anchor items (0.2 versus 0.3), and (d) equivalent versus nonequivalent groups taking the two forms (no mean difference versus a mean difference of 0.5), and (e) three different types of anchors (random, easy, and hard), resulting in 96 conditions. In addition, five traditional equating methods, (1) Tucker method; (2) Levine observed score method; (3) equipercentile equating method; (4) circle-arc method; and (5) concurrent calibration based on Rasch model, were also considered, plus seven CRF-based imputation equating methods for a total of 12 methods in this study. The findings suggest that benefiting from the advantages of ML techniques, CRF-based methods that incorporate the equating result of the Tucker method, such as IMP_total_Tucker, IMP_pair_Tucker, and IMP_Tucker_cirlce methods, can yield more robust and trustable estimates for the “missingness” in an equating task and therefore result in more accurate equated scores than other counterparts in short-length tests with small samples.
The part of responses that is absent in the nonequivalent groups with anchor test (NEAT) design can be managed to a planned missing scenario. In the context of small sample sizes, we present a machine learning (ML)-based imputation technique called chaining random forests (CRF) to perform equating tasks within the NEAT design. Specifically, seven CRF-based imputation equating methods are proposed based on different data augmentation methods. The equating performance of the proposed methods is examined through a simulation study. Five factors are considered: (a) test length (20, 30, 40, 50), (b) sample size per test form (50 versus 100), (c) ratio of common/anchor items (0.2 versus 0.3), and (d) equivalent versus nonequivalent groups taking the two forms (no mean difference versus a mean difference of 0.5), and (e) three different types of anchors (random, easy, and hard), resulting in 96 conditions. In addition, five traditional equating methods, (1) Tucker method; (2) Levine observed score method; (3) equipercentile equating method; (4) circle-arc method; and (5) concurrent calibration based on Rasch model, were also considered, plus seven CRF-based imputation equating methods for a total of 12 methods in this study. The findings suggest that benefiting from the advantages of ML techniques, CRF-based methods that incorporate the equating result of the Tucker method, such as IMP_total_Tucker, IMP_pair_Tucker, and IMP_Tucker_cirlce methods, can yield more robust and trustable estimates for the “missingness” in an equating task and therefore result in more accurate equated scores than other counterparts in short-length tests with small samples.
VA psychologists’ professional practices and attitudes toward tele-neuropsychology among a tele-neuropsychology interest group within the Veterans Health Administration
.
Machine learning item selection for short scale construction: A proof-of-concept using the SIMS
The sensitivity of the IOP-29 and IOP-M to coached feigning of depression and mTBI: An online simulation study in a community sample from the United Kingdom
.