Black cardamom (Amomum subulatum) extract improves growth potential, antioxidant status, immune parameters and response to crowding stress in Catla catla

Abstract

Natural herbs are excellent alternatives to synthetic compounds to enhance the growth performance and health status of fish. This study was conducted to evaluate the efficacy of black cardamom (Amomum subulatum) extract (BCE) as an herbal supplement in improving the growth, antioxidant status, haematology, and serum biochemistry of Catla catla. The acclimatized fish (N = 900; average initial weight = 14.44 ± 0.33 g) were allocated into five groups (60 fish/group in triplicate) in hapas (4 × 2 × 2.5 ft) and provided with feed containing 0 (control), 0.5, 1, 2 and 4 g/kg BCE for 90 days before being subjected to 8 days of crowding stress. After 90 days, significantly higher feed utilization and growth were observed in all BCE-fed treatments compared to the control; however, the maximum values of these parameters were noted in the 2 g/kg BCE-fed treatment. Moreover, the BCE-fed groups exhibited a significant increase in antioxidant indices (glutathione peroxidase, superoxide dismutase and catalase), with a significant reduction in malondialdehyde levels, indicating a higher antioxidant capacity compared to the control. Significant improvements in haematological parameters, such as an increase in haematocrit, haemoglobin and red blood cells and a decrease in white blood cells, were observed in BCE-fed treatments compared to the control. Furthermore, BCE-fed groups showed a significant decrease in serum glucose, cortisol and triglycerides, while total protein, globulin and albumin levels were significantly higher compared with the control. During the feeding trial of 90 days, no mortality was observed; however, the lowest cumulative mortality was noted in the 2 g/kg BCE group after crowding stress of 8 days. In conclusion, the use of BCE in feed can enhance the growth performance, antioxidant status, haematology, and serum biochemistry of C. catla and improve the resistance against crowding stress. The optimum levels of BCE for C. catla were estimated based on weight gain % (1.78 g/kg; R 2 = 0.97), feed conversion ratio (1.65 g/kg; R 2 = 0.98), MDA content (1.66 g/kg; R 2 = 0.93) and serum lysozyme activity (1.72 g/kg; R 2 = 1) using broken-line regression analysis.