Effects of immunocastration and supplementary feeding level on the performance and blood biochemical markers of farmed yearling fallow deer (Dama dama)

Abstract

In cervids, blood biochemical markers may reflect changes in various physiological and environmental factors, especially in response to changes in metabolism following nutrient supplementation or the manipulation of hormone production. Decreasing androgen production through immunocastration (IC) to ease the husbandry of male animals is currently a more ethically acceptable method than physical castration, but its commercial use is unexplored in fallow deer. Forty yearlings male fallow deer were grouped into four treatment combinations: IC on high (200 g commercial pellets + 600 g concentrate mixture of 90% oats and 10% wheat grains) or low (100 g commercial pellets + 300 g concentrate mixture of 90% oats and 10% wheat grains) level of feed supplementation, or noncastrated bucks on a high or low level of feed supplementation. Immunocastrated animals were vaccinated at the start of the study (Week 1) and again during Week 3 of the study. Diet affected all body growth parameters (slaughter weight, daily gain, carcass weight, dressing percentage and body condition score). Fallow deer from all treatments showed increasing concentrations of fat and energy blood biochemical markers over the study period, including plasma glucose (GLU) and triglyceride (TRIG), and decreased cholesterol (CHOL) and lipase (LIPA) concentrations. The higher level of supplementary feeding decreased plasma albumin (ALB) and creatinine (CREA), and increased globulin (GLOB) concentrations. On the other hand, IC and lower-level supplementation reduced growth performance. Overall, IC may be an interesting tool for welfare management of yearling stags for slaughter; however, the advantage appears to only be in well-fed animals, as low-level of feeding can further reduce growth performance in immunocastrated animals. Further studies should evaluate the carcass performance of animals under similar treatment conditions to ascertain the effects on muscle and fat yields.

A pilot investigation on the effect of induced saliva flow on digestive parameters in sheep, and a comparison with cattle

Abstract

Sheep with a relatively low methane yield were observed to have shorter fluid and particle mean retention times (MRT). Because the application of pilocarpine, a saliva stimulant, was successful in reducing retention times in ruminants in previous studies, we applied this substance to sheep, expecting a reduction in MRT and methane yield. Three non-pregnant sheep (74 ± 10 kg) were fed a hay-only diet in a 3 × 3 Latin square design with oral doses of 0, 2.5 and 5 mg pilocarpine/kg body weight and day. Measurements included feed and water intake, MRT of liquid and particulate phases in the reticulorumen (RR) and total gastrointestinal tract (GIT), ruminal microbial yield (via urinary purine bases and metabolic faecal nitrogen), total tract methane emission, apparent nutrient digestibility and rumen fluid parameters. Data were investigated for linear and quadratic effects using orthogonal polynomial contrasts. The MRT of liquid and small particles in the RR and total GIT, and the short-chain fatty acid concentration in rumen fluid, linearly declined with increasing pilocarpine dosage, while no quadratic relationship was detected. Intake of feed DM and water, apparent nutrient digestibility, methane yield and microbial yield were not affected by pilocarpine. When combining the sheep data with that of a similar experiment in cattle, we found that the MRT of the liquid phase was positively associated with estimated NDF digestibility and with methane production per digested NDF, but was not associated with microbial yield or the ratio of acetate to propionate. The ratio between MRT of the particulate and the liquid phase was smaller for sheep than that for cattle, and was not affected by treatment. Differences in this ratio might explain why species reacted differently to the saliva-inducing agent, which might help to explain the discrepancy between species in the effect of induced saliva flow on digestive parameters.

Effects of dietary copper and zinc hydroxychloride supplementation on bone development, skin quality and hematological parameters of broilers chickens

Abstract

This study was carried out to evaluate the effects of supplementation with different levels of copper (Cu) and zinc (Zn), using two mineral sources (sulphate and hydroxy forms), on the bone characteristics, skin strength/elasticity, and haematological parameters of broilers. A total of 1792 1-day-old male Cobb-500 broiler chickens were randomly distributed among eight dietary treatments, using Cu sulphate (CSM) or hydroxychloride (CHC), and Zn sulphate (ZSM) or hydroxychloride (ZHC). The dietary treatments were as follows: (1) low-CSM/high-ZSM, (2) high-CSM/high-ZSM, (3) low-CHC/low-ZHC, (4) low-CHC/medium-ZHC, (5) low-CHC/high-ZHC, (6) high-CHC/low-ZHC, (7) high-CHC/medium-ZHC, and (8) high-CHC/high-ZHC. On Day 42, blood samples were collected from one bird/pen to analyze the haematological parameters. Finally, two birds/pen were slaughtered, and the tibia and femur were collected to analyze the quality of bone and skin. The means were subjected to ANOVA and, when significant, compared by Tukey's test (p < 0.05) or Dunnett's (p < 0.05) test. The haematological parameters were not influenced by mineral supplementation. However, the inclusion of low ZHC enhanced the skin strength compared to high ZHC (p = 0.046). Furthermore, the bone mineral density of the tibia proximal epiphysis, tibia ash and tibia mineral content were positively improved with supplementation of low-CHC/medium-ZHC compared to high-CHC/medium-ZHC. This study demonstrated that hydroxy compounds are potential alternatives for replacing sulphate supplements in broiler diets. Moreover, among the Cu and Zn levels, the low CHC (15 mg/kg) and medium ZHC (100 mg/kg) improved bone development and skin integrity, suggesting that the combination of Cu and Zn can be a nutritional strategy to prevent the incidence of leg disorders in broilers.

Milk production and milk fatty acid profile as a response to feeding dairy cows with flax products during the persistence period

Abstract

The response of enhanced dietary dairy cows with linolenic-rich sources during the persistence period was studied to determine its effectiveness on some blood constituents, milk yield and milk fatty acid profile. A complete randomized design experiment was conducted in the spring and involved 20 Friesian cows (60 days in milk) that were divided into four groups of five animals by milk production according to different types of flax source in isonitrogenous and isoenergetic rations: a traditional diet with no flax source (CO), a diet contains flaxseed meal (FLM), a diet contains whole flaxseed (FLS) and a diet contains flax oil (FLO). DM intake and DMI% of weight were increased for cows fed FLM. However, Omega-3 intake was reduced for cows fed on CO ration. Although, blood serum metabolites did not differ among treatments (p < 0.05) except serum cholesterol which was increased with FLO cows, and serum total lipid which was reduced with FLM cows. Cows fed on flax product and control peaked in milk production at the same time (8-week post-partum), and cows fed on FLM continued in peak production for a longer period. Using flax products enhanced milk production, cows fed FLM had higher milk yield than those fed CO (20.76 vs.16.32 kg/d), and there was no difference between cows fed FLO (17.87 kg/d) and those fed FLS (18.01 kg/d). Also, energy-corrected milk yield and 3.5 fat-corrected milk yield were increased with cows fed on FLM as compared with cows fed CO ration. Flax products had no significant effect on milk fat and protein %, whereas cows fed FLM had the greatest fat% value (3.35%) and FLS had the greatest protein% value (2.66%). Moreover, fat and protein yield increased significantly in treatment groups compared to the CO group, whereas they were the greatest in FLM g (0.700 and 0.540 kg/d), respectively. Concentrations of omega-3-fatty acids in milk fat were increased by using FLO in the ration; using flaxseed meal enhanced conjugated linoleic acids in milk fat and resulted in the highest omega-6-to-omega-3-fatty-acids ratio. The data suggest that flax seed meals can be used as a fat source in the diet of dairy cows during the persistence period with a good response to milk production and its health properties. Moreover, flax oil should be protected before use in rations to prevent its components from saturation or being changed in the rumen.

Effect of dietary krill oil supplementation on horse red blood cell membrane fatty acid composition and blood parameters

Abstract

Supplementation with marine-derived n−3 long-chain polyunsaturated fatty acids (LC PUFAs), eicosapentaenoic acid (EPA, 20:5 n−3) and docosahexaenoic acid (DHA, 22:6 n−3) is linked to beneficial health effects in both humans and horses. Krill oil (KO), which is extracted from the Antarctic krill (Euphausia superba), is well documented as a safe and biologically available dietary supplement in humans and several animal species, but there is a lack of documentation regarding its effect as a dietary ingredient for horses. The objective of this study was to test whether KO as a dietary supplement had the ability to raise horse red blood cell (RBC) membrane EPA and DHA, expressed as the n−3 index. Five nonworking Norwegian cold-blooded trotter horse geldings (body weight [BW]: 567 ± 38 kg) were supplemented with KO (10 mL/100 kg BW) for 35 days in a longitudinal study. Blood samples were analysed for RBC membrane fatty acid (FA) profile, haematology and serum biochemistry every 7th day. KO was well accepted by all horses, and no adverse health effects were observed during the 35-day trial period. KO supplementation affected the RBC membrane FA profile by increasing the n−3 index from Day 0 to 35 (Day 0: 0.53% vs. Day 35: 4.05% of total RBC FAs). The observed increase in the sum of EPA and DHA (p < 0.001), total n−3 FAs (p < 0.001) and the reduction of n−6 FAs (p < 0.044) resulted in a lower n–6:n−3 ratio (p < 0.001) by Day 35 of KO supplementation. In conclusion, the RBC n−3 index was increased and the general n−6:n−3 ratio was decreased in horses receiving 35-day dietary KO supplementation.

Impact of different dietary fibre sources on production performance, bacterial composition and metabolites in the caecal contents of rabbits

Abstract

This study was conducted to investigate the effects of different dietary fibre sources on growth performance, gastrointestinal tract development, caecal fermentation and bacterial composition in the caecal contents of rabbits. A total of 120 35-day-old weaned Minxinan black rabbits were divided into three groups and fed a diet composed of peanut straw powder (Group A), alfalfa powder (Group B) and soybean straw powder (Group C) as the main fibre source. The final body weight and average daily gain in Group B were higher than those in Group C, and the average daily feed intake and feed conversion ratio in Group A were lower than those in Group C (p < 0.05). The relative weights of the stomach, small intestine and caecum of rabbits in Group C were higher than those in Groups of B and A, and the relative weights of the caecal contents in Group C were lower than those in Groups A or B (p < 0.05). The pH value and propionic acid, butyric acid and valeric acid concentrations in the caecum of Group C were lower than those in the caecum of Groups A or B, and the concentration of acetic acid in the caecum was lower (p < 0.05). The dominant microbes in the caecal contents of Minxinan black rabbits were Firmicutes, Bacteroidetes and Proteobacteria at the phylum level, and the number of species, Chao1 index and ACE index measured was different between the B–C and A–C groups (p < 0.05). Different dietary fibre sources could affect the growth performance, gastrointestinal tract development and intestinal microbiota of rabbits, and the nutritional value of alfalfa powder was better than that of peanut straw and soybean straw.

Tert‐butylhydroquinone attenuates LPS‐induced pyroptosis of IPEC‐J2 cells via downregulating HMGB1/TLR4/NF‐κB axis

Abstract

Inflammatory response induced by biological stress usually occurs in weaning piglets, it reduces the production performance of piglets and even causes death. Tert-butylhydroquinone (TBHQ) is a food additive that has the effect of anti-inflammation and anti-oxidation. However, there are few reports related to the protective mechanisms of TBHQ on lipopolysaccharide (LPS) induced injury in intestinal porcine epithelial (IPEC-J2) cells. Quantitative real-time polymerase chain reaction and western blot analysis, respectively, detected the mRNA levels and protein expressions related to pyroptosis, tight junction (TJ) protein and high-mobility group box 1/toll-like receptor 4/nuclear factor kappa-B (HMGB1/TLR4/NF-κB) axis. Localisation and expression of NOD-like receptor pyrin domain containing 3 (NLRP3), HMGB1 and P-NF-κB proteins detected by immunofluorescence. The results showed that TBHQ (12.5 and 25 μM) can increase cell activity and reduce intracellular lactate dehydrogenase (LDH) levels in a dose-dependent manner. LPS significantly decreases cell viability and increases the LDH level. However, pretreatment with TBHQ evidently increases cell viability and decreases the LDH level of IPEC-J2 cells. In addition, treatment with LPS decreased the mRNA level and protein expression of zonula occludens-1, occludin and claudin-1, and increased the mRNA level and protein expression of pyroptosis and HMGB1/TLR4/NF-κB axis. Interestingly, pretreatment with TBHQ increased the TJ protein expressions as well as decreased the mRNA level and protein expressions of pyroptosis and HMGB1/TLR4/NF-κB axis. Moreover, the results of immunofluorescence showed that TBHQ significantly reduced the expression of NLRP3, HMGB1 and P-NF-κB in LPS-induced injury of IPEC-J2 cells. Therefore, we come to the conclusion that TBHQ attenuates LPS-induced pyroptosis in IPEC-J2 cells through downregulation of the HMGB1/TLR4/NF-κB axis, TBHQ may become a potential feed additive for preventing inflammatory diarrhoea in piglets.

Rabbits (Oryctolagus cuniculus) increase caecal calcium absorption at increasing dietary calcium levels

Abstract

Hindgut fermenting herbivores from different vertebrate taxa, including tortoises, and among mammals some afrotheria, perissodactyla incl. equids, several rodents as well as lagomorphs absorb more calcium (Ca) from the digesta than they require, and excrete the surplus via urine. Both proximate and ultimate causes are elusive. It was suggested that this mechanism might ensure phosphorus availability for the hindgut microbiome by removing potentially complex-building Ca from the digesta. Here we use Ussing chamber experiments to show that rabbits (Oryctolagus cuniculus) maintained on four different diets (six animals/diet) increase active Ca absorption at increasing Ca levels. This contradicts the common assumption that at higher dietary levels, where passive uptake should be more prevalent, active transport can relax and hence supports the deliberate removal hypothesis. In the rabbits, this absorption was distinctively higher in the caecum than in the duodenum, which is unexpected in mammals. Additional quantification of the presence of two proteins involved in active Ca absorption (calbindin-D9K CB; vitamin D receptor, VDR) showed higher presence with higher dietary Ca. However, their detailed distribution across the intestinal tract and the diet groups suggests that other factors not investigated in this study must play major roles in Ca absorption in rabbits. Investigating strategies of herbivores to mitigate potential negative effects of Ca in the digesta on microbial activity and growth might represent a promising area of future research.

Prevention of aflatoxin B1 toxicity by pomegranate peel extract and its effects on growth, blood biochemical changes, oxidative stress and histopathological alterations

Abstract

Contamination of animal feeds with mycotoxins is one of the most serious issues in the world of animal nutrition. The purpose of this study was to assess the efficacy of pomegranate peel extract (PPE) versus oxytetracycline (OXY) in reducing aflatoxin B1 (AFB1) toxicity in rabbits fed contaminated diets. This experiment was done on 48 weaned NZW, four groups (n = 12). The first (AF) served as the control group feed on an infected diet by AFB1 between 0.02 and 0.03 mg/kg BW; second (AF + OXY) received an infected diet by AFB1 and was treated with OXY 200 mg/kg BW/day; third (AF + PPE) received an infected diet by AFB1 and treated with PPE 130 mg/kg BW/day; fourth (AF + OXY + PPE) received an infected diet by AFB1 and treated with a daily oral dose of 100 mg/kg BW/day of OXY + PPE (65 mg/kg BW/day), the experiment lasted for 8 weeks experiment. The treated group with PPE and its combination with OXY concurrent with AF showed amelioration markedly for liver and kidney function. To summarise, adding PPE and combining it with OXY at a half dose to an AFB1-contaminated diet can help minimise the harmful effects of AFB1 on rabbit performance.

Egg mineral levels, hatching results and bone properties in embryos and chicks obtained from broiler breeders at different ages

Abstract

It is inevitable to obtain chicks from breeders of different ages in broiler fattening. However, breeder age has an effect on eggs. There is no detailed study on the changes in mineral levels in eggs and bones of these effects. Therefore, the aim of this study examines how mineral levels of shell, albumen, egg yolk, and bone, embryonic development and bone characteristics change according to the breeder age. A total of 370 fresh hatching eggs were obtained from Ross-308 breeders at 2 different ages (25 to 60-week-old). Egg, embryo, yolk sac and chick characteristics were determined. Morphometric parameters of bones of embryos at 19 days of age and chicks at hatch were examined. Mineral levels of albumen, yolk, shell and bones of embryo and chick were determined. Egg weight, embryo weight, embryo length, chick weight and chick length were higher in old breeder than those of younger one. Femur length, width and Seedor index of tibia, weight, width and Seedor index of metatarsus were found to be high in embryos at 19 days of old breeder than young breeder. There were differences in relative femur weight, tibia length and relative metatarsus weight of chicks at hatch. The mineral levels were high in the femur, tibia and metatarsus of embryos and chicks, in parts of the egg of old breeder. K, Ca, Mg, P, Fe and Mn levels in the eggshell were decreased during incubation. Ca and Mg levels were decreased in the yolk during incubation. K, Ca, Mg, P, Fe, Zn and Mn levels were found to be high in chick bones than those of bones of embryos at 19 days of age. The total embryonic death was found to be high in the fertile eggs of younger breeder group. No differences were observed in fertility, hatchability of fertile and set eggs according to the age of breeders. These data may be useful in designing in-ovo injections, formulating diets of broiler breeders and broilers and in preventing bone diseases in broilers.