Impacts of red clover and sainfoin silages on the performance, nutrient utilization and milk fatty acids profile of ruminants: A meta‐analysis

Abstract

Inclusion of plants rich in secondary metabolites into grass ensiling offers multiple benefits for ruminants, from improving productive performance to health-promoting effects as well as helping to reduce environment pollution. The present meta-analysis summarizes the dietary inclusion levels of red clover silage (RCS) and sainfoin silages (SS) as well as the types of silages fed to dairy cows and small ruminants. A total of 37 in vivo studies (26 articles in dairy cows and 11 articles in small ruminants) were aggregated after being strictly selected using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A mixed model methodology was used to examine our objectives. This method declares the subject 'study' as random effects and 'inclusion level' as fixed effects. Results indicated that RCS proportion was not associated with nutrient digestibility except for a quadratic effect (p < 0.05) on neutral detergent fibre digestibility. Higher RCS inclusion linearly increased (p < 0.05) nitrogen (N) intake but had no effect on dairy cows' production. Increasing RCS proportion altered milk fatty acid profile where the concentration of conjugated linolenic acid (CLA), C18:3 α-linolenic acid (ALA) and C18:0 linearly increased (p < 0.01). In small ruminants, SS proportion had no relationship with nutrient digestibility, N metabolism and growth performance (p > 0.05). However, a combination of dietary RCS + SS resulted in significantly higher (p < 0.05) CLA and ALA concentration in cow milk and average daily gain (ADG) in small ruminants compared to diets composed from either grass silage or alfalfa silage. Altogether, this meta-analysis highlights the synergistic effects of a combination of SS + RCS inclusion in improving milk fatty acids (FA) profile of dairy cows and ADG of small ruminants.

In ovo injection of soy isoflavones on hatching performance and intestinal development of newly hatched chicks

Abstract

This study aimed to evaluate the effects of in ovo injection of soy isoflavones (ISF) on hatchability, body weight, antioxidant status and intestinal development of newly hatched broiler chicks. One hundred and eighty fertile eggs were divided as follows: the control group, 3 mg/egg ISF (low dose) and 6 mg/egg ISF (high dose) on the 18th day of incubation. The results demonstrated that in ovo inclusion of 6 mg of ISF significantly increased hatchability and hatch weight. Both doses of ISF inclusion elevated the serum glutathione peroxidase and slightly decreased malondialdehyde compared to the control group. The high dose of ISF brings higher villus height and a higher villus/crypt ratio in chicks. Moreover, the mRNA levels of tumour necrosis factor- α and interferon-gamma in the spleen were significantly decreased. The ISF treatments showed an improvement in intestinal enzyme expression levels of sucrose isomaltase and mucin 2  as well as tight junction protein (TJ) mRNA expression of claudin-1 at high doses of ISF (p < 0.05) when compared with the other groups. Furthermore, the mRNA level of IGF-1 was increased in the high doses of ISF compared to the control. Overall, these findings indicate that in ovo administration of ISF on the 18th day of incubation enhances hatchability, antioxidant status and intestinal morphometrics in hatched chicks and modulates the expression of proinflammatory cytokines, TJs and insulin-like growth factor. In addition, the sustainability of antioxidants and other positive effects of ISF may increase chick viability and growth performance.

Interplay between zinc and cell proliferation and implications for the growth of livestock

Abstract

Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.

Ovarian activity, hormone profile, pro‐inflammatory cytokines and reproductive performance of buffalo cows fed diets with different estrogenicity

Abstract

Buffalo cows play a vital role in milk and meat production; however, they are characterised by several reproductive disorders. Feeding diets with high oestrogenic activity may be a disrupting factor. This study aimed to evaluate the effects of feeding roughages with different oestrogenic activity on the reproductive performance of early postpartum buffalo cows. A total of 30 buffalo cows were equally stratified into two experimental groups and fed either Trifolium alexandrinum (Berseem clover, phytoestrogenic roughage) or corn silage (nonoestrogenic roughage) for 90 consecutive days. After 35 days from the beginning of the feeding treatments, buffalo cows in both groups were synchronized for oestrus using a double i.m. injection of 2 mL prostaglandin F, 11 days apart, subsequently, overt signs of oestrus were observed and recorded. Moreover, ovarian structures, numbers and sizes of follicles and corpora lutea, were ultrasonography examined at day—12 (represents Day 35 of feeding treatment), Day 0 (day of oestrus) and Day 11 after oestrous synchronization (mid-luteal phase). Pregnancy was diagnosed 35 days postinsemination. Blood serum samples were analysed for progesterone (P4), estradiol (E2), tumor necrosis factor (TNF-α), interlukein-1β (IL-1β) and nitric oxide (NO). The high performance liquid chromatography-analysis of roughages showed the abundance of isoflavones in Berseem clover, with about 58 times higher concentration than that in corn silage group. During the experimental period, the numbers of ovarian follicles of all size categories were higher in the Berseem clover group than that in the corn silage group. No significant difference in the numbers of corpora lutea was observed between both experimental groups, but lower (p < 0.05) diameter of corpus luteum was observed in the Berseem clover group than that in the corn silage group. The Berseem clover group had higher (p < 0.05) overall concentrations of blood serum E2, IL-1β and TNF-α, but lower (p < 0.05) overall concentrations of blood serum P4 than those recorded in the corn silage group. Oestrous rate, onset of oestrus time and oestrous duration were not significantly affected by the treatment. The conception rate was significantly (p < 0.05) reduced in the Berseem clover group compared with that in the corn silage group. In conclusion, feeding roughage with a high oestrogenic activity such as Berseem clover can negatively affect the conception rate of buffalo cows. This reproductive loss seems to be associated with inadequate luteal function and P4 concentration during early pregnancy.

Application potential of Humulus Scandens in livestock husbandry

Abstract

On the background of antibiotic-free livestock husbandry, animal nutritionists are trying to find alternatives to antibiotics. Many herbs have been developed for animal diets to replace antibiotics. Humulus Scandens (HS) is also known as Humulus japonicus and Japanese hop in English, lü Cao (葎草) in Mandarin Chinese and kanamugura (カナムグラ) in Japanese. It is a traditional Chinese medicine with good environmental adaptability. It can grow rapidly and cover any area. Its high yield, strong vitality and medical value allow its potential to be used as an exogenous additive for animal diets to replace antibiotics. However, the knowledge about this herb is limited at present. This manuscript reviewed the processing method of HS and its application in livestock husbandry in order to provide references for its application.

Nutritional ecology of European rabbit (Oryctolagus cuniculus): Factors affecting chemical composition of gastric content

Abstract

Nutritional ecology seeks to unravel the extensive web of nutritional links that directs animals in their interactions with their ecological and social environments. European rabbit (Oryctolagus cuniculus) populations its endemic locations are declining and it is considered a keystone species of the Mediterranean ecosystem prompteing the interest in its conservation. The main aim of this study was to determine the nutritional composition of the diet of European rabbits through the relative and absolute chemical composition of the gastric content. To address this objective, gastric content was collected from 80 European rabbits in a Mediterranean area for the analysis of its chemical composition. To this end, gastric content was analyzed for dry matter (DM), organic matter (OM), ash, crude protein (CP), highly digestible nonnitrogenous nutrients (HDNN), neutral detergent fibre (NDF), acid detergent fibre (ADF) and lignin. The rabbits were divided into two groups: EMPTY and FULL, depending on the level of stomach filling, directly related to food intake. Our results revealed a positive correlation between the rabbits weight with DM in the gastric content, total gastric content with DM in the gastric content, and DM in gastric content with all chemical parameters analysed. The mean relative values obtained were 8.8%, 25.5%, 40.4% and 25.4%, for ash, CP, NDF and HDNN, respectively. Moreover, EMPTY rabbits had both a proportional (+19%, p = 0.002 and –40%; p = 0.004, on NDF and HDNN, respectively) and absolute (−38%, p = 0.014, –52%; p = 0.012, −52%; p = 0.011 and +83%; p = 0.008 for OM, ash, HDNN, and lignin, respectively) different proportion of nutrients in gastric contents than FULL animals. Since there is a connection between this availability and the fitness of this species, understanding the chemical composition of the rabbit's diet can be utilised to delve into its biology. Our study provides information that will help elucidate the factors affecting the chemical composition of the gastric content of European rabbits to assist land use planners and conservationists in identifying sites for conservation in Mediterranean ecosystems.

Prevention of neurotoxicity and cognitive impairment induced by zinc nanoparticles by oral administration of saffron extract

Abstract

The accumulation of relatively higher dose of zinc oxide nanoparticles in brain was reported to produce neurotoxicity. Indeed, nanoparticles have a high ability to penetrate biological membranes and be uptaken by cells, which may cause cell disorders and physiological dysfunctions. The aim of the current study was to evaluate, whether oral administration of saffron extract, in rats, can protect from neurotoxicity and behavioural disturbances induced by chronic administration of ZnO-NPs. Daily oral administration of ZnO-NPs was performed for 21 consecutive days to induce oxidative stress-like situation. Then after the saffron extract was concomitantly administrated in several rat groups to overcome the nanotoxicological effect induced by ZnO-NPs. In the frontal cortex, the hippocampus and the cerebellum, ZnO-NPs induced a H2O2-oxydative stress-like effect reflected in reduced enzymatic activities of catalase, superoxide dismutase and glutathione S-transferase, and decreased acetylcholinesterase activity. In addition, increased levels of proinflammatory interleukins IL-6 and IL-1-⍺ occurred in the hippocampus, reveal the existence of brain inflammation. The concomitant administration of saffron extract to animals exposed to ZnO-NPs prevented the enhanced anxiety-related to the behaviour in the elevated plus-maze test, the open field test and preserved spatial learning abilities in the Morris water maze. Moreover, animals exposed to ZnO-NPs and saffron showed abnormal activity of several antioxidant enzymes as well as acetylcholinesterase activity, an effect that may underly the preserved anxiety-like behaviour and spatial learning abilities observed in these animals. Saffron extract has a potential beneficial therapeutic effect: antioxidant, anti-inflammatory and neuroprotective agent.

Loss of body weight and lean mass in long‐stay, hospitalized canine patients

Abstract

A high prevalence of malnutrition occurs in human hospitals and has been associated with detrimental consequences. By comparison, much less is known in hospitalized veterinary patients. The aims of this study were to evaluate the prevalence of malnutrition and body composition changes in long-stay hospitalised patients using an isotopic dilution technique. An additional objective was to compare the changes in composition with commonly used methods measuring body fat and lean mass. The dogs consumed on average 77.5% of their estimated resting energy requirements during their stay. The majority (78.3%) of dogs lost body weight, of which a greater proportion was lean mass (61.8%) than fat mass (FM) (38.2%). There was a moderate correlation between body condition score and percentage FM measured at admission (Kendall's τ = 0.51; p = 0.002), and at discharge (Kendall's τ = 0.55; p = 0.001). However, there was no correlation between muscle condition score and fat-free mass at either admission or discharge (p > 0.1). Duration of stay was positively associated with loss of body weight (p < 0.001), but was not associated with changes in either lean or FM expressed as a percentage of body weight or in absolute terms (p > 0.1), which was presumed to be explained by small sample size and variation. Food intake was not found to a significant factor for lean or FM loss (p > 0.1). These findings indicate that weight loss is common in hospitalized canine patients, which is not explained by simple under-eating. Other factors such as inflammation and inactivity should be evaluated in future studies to determine their role in influencing muscle and FM changes in hospitalized canine patients.

Influence of high‐ and low‐fermentable dietary fibres in sows’ diet on the colostrum potential against Clostridioides difficile toxin‐induced effects in IPEC‐J2 cells

Abstract

Sow colostrum has been reported to protect the IPEC-J2 cells and piglet colon tissues from detrimental effect of Clostridioides difficile toxins. Since dietary fibre can influence the colostrum composition in sows, we hypothesised that it can also differentially affect the colostrum potential against C. difficile toxin-induced effects in IPEC-J2. IPEC-J2 were incubated with colostrum from sows fed either high-fermentable sugar beet pulp (SBP) or low-fermentable lignocellulose (LNC) fibres and in combination with the toxins and analysed by trans-epithelial electrical resistance (TEER) and cell viability using propidium iodide in flow cytometry. Toxins drastically decreased the integrity of IPEC-J2. Colostrum from the sows fed either SBP or LNC exerted protective effect against toxins on IPEC-J2 integrity and this effect was numerically superior in the SBP group. Differences in the percentages of TEER between different treatments were noted after 2 h (p = 0.043), 3 h (p = 0.017) and 4 h (p = 0.017) of incubation and a tendency for differences was noted after 5 h of incubation (p = 0.071). Colostrum from either SBP- or LNC-fed sows did not protect the IPEC-J2 from toxin-induced death. Colostrum of the sows fed either high-fermentable or low-fermentable fibres has a potential to protect IPEC-J2 from the loss of integrity, which may be important in protection from C. difficile-infection development in neonatal piglets.

Use of former food products in dairy buffalo nutrition: In vitro and in vivo evaluation

Abstract

A feeding strategy that maintains high content of functional molecules in buffalo milk has been verified by giving Sorghum vulgare as green fodder, but it is not available all year round. The aim of this study was to evaluate the inclusion of former food products (FFPs) containing 87% biscuit meal (nonstructural carbohydrate: 60.1%; starch 14.7; crude protein 10.6), in the diet of buffaloes in terms of: (a) fermentation characteristics through gas production technique; (b) milk yield (MY) and quality; (c) content of some biomolecules and total antioxidant activity. The experiment was performed involving 50 buffaloes divided into two groups: Green group and FFPs group (animals fed Total Mixed Ration with either green forage or FFPs respectively). Daily MY was recorded and milk qualitative analyses were determined monthly for 90 days. Furthermore, fermentation characteristics of the diets were studied in vitro. No significant differences were recorded in feed intake, BCS and MY and quality. Similar in vitro fermentation data of two diets were found, with slight differences in terms of gas production and degradability. During the incubation, kinetic parameters showed a faster fermentation process with the diet of the FFPs group in relation to Green group (p < 0.05). Green group had higher levels (p < 0.01) of γ-butyrobetaine, glycine betaine, l-carnitine and propionyl l-carnitine in milk, whereas no differences were observed for δ-valerobetaine and acetyl l-carnitine. Total antioxidant capacity and iron reduction antioxidant assay were higher (p < 0.05) in the plasma and milk of the Green group. The administration of a diet high in simple sugars, obtained with FFPs, seems to favour the ruminal biosynthesis of some metabolites in milk, such as δ-valerobetaine and acetyl- l-carnitine, similar to green forage administration. Overall, the use of biscuit meal can be an alternative to green fodder when it is not available to ensure environmental sustainability and optimize costs without compromising milk quality.