Exogenous spermidine effectively improves the quality of cryopreserved boar sperm

Abstract

Boar sperm are less resistant to the dramatic environmental changes that occur during in vitro preservation. Spermidine has various physiological functions including the anti-oxidative effect. The main objective of this study was to clarify whether spermidine could protect boar sperm from the attack of reactive oxygen species under cryopreservation treatment. We set the concentrations of spermidine at 0, 2, 4, 6, and 8 mmol/L and evaluated the effects of spermidine on sperm motility, viability, malformation rates, kinetic parameters, membrane integrity, mitochondrial activity, DNA integrity, H2O2 content, malondialdehyde content, total antioxidant capacity, and antioxidant enzyme activity. Finally, the effects of spermidine on the sperm fertility were assessed by artificial insemination. The results showed that spermidine improved various physiological parameters of sperm in a dose-dependent manner. The quality and antioxidant capacity of sperm cryopreserved with 6 mmol/L spermidine were significantly less reduced (P < 0.05), and the contents of malformation rate, H2O2, and malondialdehyde content were significantly decreased (P < 0.05). The significant increase in the number of litters indicated the possibility that spermidine had important practical value in pig reproduction (P < 0.05). Therefore, the addition of appropriate concentrations of spermidine to cryopreservation extenders may effectively improve the quality of boar sperm for in vitro preservation.

The short‐term feeding of low‐ and high‐histidine diets prior to market affects the muscle carnosine and anserine contents and meat quality of broilers

Abstract

Functional dipeptides carnosine and anserine are abundant in muscle. We determined the effect of short-term dietary histidine (His) content on muscle carnosine and anserine contents and meat quality of broilers. Three groups of 28-day-old female broilers were fed diets with His contents of 67%, 100%, or 150% of requirement for 10 days before market (His contents 0.21%, 0.32%, and 0.48%, respectively). The carnosine and anserine contents of 0-h aged muscle significantly increased with dietary His content; in particular, the carnosine content was 162% higher in the His 0.48% group than in the His 0.32% group. The contents of both peptides also increased with dietary His content in 48-h aged muscle, but carnosine was not detected in 0- and 48-h aged muscle of the His 0.21% group. The drip loss, cooking loss, shear force, and pH of meat were not affected by the dietary His content. The 2-thiobarbituric acid-reactive substances contents of 24- and 48-h aged muscles were lower in the His 0.48% group than in the other groups, and the a* and b* values were lower in the His 0.21% group. These results suggest that short-term dietary His content affects imidazole dipeptide contents, antioxidative capacity, and color of broiler meat.

Nutritional quality and organic acid profile of rice bran fermented with lactic acid bacteria isolated from horse feces

Abstract

The study aimed to determine the effect of Limosilactobacillus equigenerosi and Ligilactobacillus equi as inoculants for solid-state fermentation (SSF) in the proximate composition of nutrients and organic acid profile of rice bran (RB). The RB was treated with distilled water (DW) without inoculant (control), L. equigenerosi (T1), L. equi (T2), and L. equigenerosi and L. equi 1:1 (v:v) (T3). For the treatments, 90 mL of culture was pelleted and suspended with DW. Each treatment was replicated three times and incubated for 4, 7, and 10 days at 37°C. The crude protein, ether extract, crude ash, crude fiber, neutral detergent fiber, and acid detergent fiber were increased (P < 0.05) in fermented RB. The lactate and total organic acid produced were increased by the addition of lactic acid bacteria (LAB) (P < 0.01), and the highest concentrations were recorded in treatments containing L. equi (T2 and T3). Acetate production in T1 was highest than in control, T2, and T3 (P < 0.01). The results showed that LAB isolated from horse feces in combination with SSF can improve the quality of RB as an ingredient for animal feed based on the higher concentrations of protein, carbohydrates, minerals, and organic acids.

Mast cells are upregulated in hidradenitis suppurativa tissue, associated with epithelialized tunnels and normalized by spleen tyrosine kinase antagonism

Abstract

Mast cells have traditionally been associated with allergic inflammatory responses; however, they play important roles in cutaneous innate immunity and wound healing. The Hidradenitis Suppurativa tissue transcriptome is associated with alterations in innate immunity and wound healing-associated pathways; however, the role of mast cells in the disease is unexplored. We demonstrate that mast cell-associated gene expression (using whole tissue RNAseq) is upregulated, and in-silico cellular deconvolution identifies activated mast cells upregulated and resting mast cells downregulated in lesional tissue. Tryptase/Chymase positive mast cells (identified using IHC) localize adjacent to epithelialized tunnels, fibrotic regions of the dermis and at perivascular sites associated with Neutrophil Extracellular Trap formation and TNF-alpha production. Treatment with Spleen Tyrosine Kinase antagonist (Fostamatinib) reduces the expression of mast cell-associated gene transcripts, associated biochemical pathways and the number of tryptase/chymase positive mast cells in lesional hidradenitis suppurativa tissue. This data indicates that although mast cells are not the most abundant cell type in Hidradenitis Suppurativa tissue, the dysregulation of mast cells is paralleled with B cell/plasma cell inflammation, inflammatory epithelialized tunnels and epithelial budding. This provides an explanation as to the mixed inflammatory activation signature seen in HS, the correlation with dysregulated wound healing and potential pathways involved in the development of epithelialized tunnels.

Nicotinamide supplementation alters plasma lipidomic profiles of peripartal dairy cows

Abstract

Fatty liver syndrome, a common health problem in dairy cows, occurs during the transition from pregnancy to lactation. If the energy supplied to the cow's body cannot meet its needs, a negative energy balance ensues, and the direct response is fat mobilization. Nicotinamide (NAM) has been reported to reduce the nonesterified fatty acid concentration of postpartum plasma. To study the biochemical adaptations underlying this physiologic dysregulation, 12 dairy cows were sequentially assigned to a NAM (45 g/day) treatment or control group. Blood samples were collected on day (D) 1 and D21 relative to parturition. Changes to the plasma lipid metabolism of dairy cows in the two groups were compared using lipidomics. There were significant increases in plasma sphingomyelins d18:1/18:0, d18:1/23:0, d18:1/24:1, d18:1/24:0, and d18:0/24:0 in the NAM group on D1 relative to parturition. In addition, fatty acids 18:2, 18:1, 18:0, 16:1, and 16:0 were obviously decreased on D21 relative to calving. This research has provided insights into how NAM supplementation improves lipid metabolism in perinatal dairy cows.

Clinical characteristics and heterogeneity of generalized pustular psoriasis: A comparative study in a large retrospective cohort

Abstract

Generalized pustular psoriasis (GPP) is a rare and potentially life-threatening skin disease and the clinical heterogeneity of which is largely unknown. Retrospective cohort analysis was conducted on hospitalized GPP patients between January 2010 and November 2022. A total of 416 patients with GPP and psoriasis vulgaris (PV) respectively were included, matched 1:1 by sex and age. The heterogeneity of GPP was stratified by PV history and age. Compared with PV, GPP was significantly associated with prolonged hospitalization (11.7 vs. 10.3 day, p < 0.001), elevated neutrophil lymphocyte ratio (NLR) (5.93 vs. 2.44, p < 0.001) and anemia (13.9% vs. 1.2%, p < 0.001). Moreover, GPP alone (without PV history) was a relatively severer subtype with higher temperature (37.6°C vs. 38.0°C, p = 0.002) and skin infections (5.2% vs. 11.4%, p = 0.019) than GPP with PV. For patients across different age, compared with juvenile patients, clinical features support a severer phenotype in middle-aged, including higher incidence of anaemia (7.5% vs. 16.0%, p = 0.023) and NLR score (3.83 vs. 6.88, p < 0.001). Interleukin-6 (r = 0.59), high density lipoprotein cholesterol (r = −0.56), albumin (r = −0.53) and C-reactive protein-to-albumin ratio (r = 0.49) were the most relevant markers of severity in GPP alone, GPP with PV, juvenile and middle-aged GPP, respectively. This retrospective cohort suggests that GPP is highly heterogeneous and GPP alone and middle-aged GPP exhibit severe disease phenotypes. More attention on the heterogeneity of this severe disease is warranted to meet the unmet needs and promote the individualized management of GPP.

A newly developed bacteriocin like substance to replace monensin in diets of lactating ewes

Abstract

The aim of the present experiment was to evaluate the effect of feeding a newly produced bacteriocin-like substance (BLS) as a replacement for monensin in the diets of lactating ewes. In Experiment 1, the effects of BLS or monensin at 0.5, 1, 1.5, and 2 g/kg diet on in vitro ruminal fermentation were compared. In Experiment 2, 30 multiparous Barki ewes were divided into three treatments in a complete randomized design for 90 days. The ewes were fed a basal diet without supplementation or supplemented with monensin or BLS at 0.5 g/kg DM diet. In Experiment 1, the highest levels of BLS and monensin decreased gas production, while all levels of additives linearly decreased methane production. In Experiment 2, BLS increased nutrient digestibility. Additives increased ruminal total and individual volatile fatty acids and decreased ruminal ammonia-N. The BLS increased serum albumin and decreased the concentrations of serum liver enzymes, while both additives increased serum glucose and decreased urea-N. Additives increased daily production of milk, while the BLS treatment increased the feed efficiency. It is concluded that dietary inclusion of BLS at 0.5 g/kg DM for lactating ewes is recommended to replace monensin.

Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short‐term fasting

Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short-term fasting

This study confirmed that BAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, BAT undergoes additional dynamic functional and morphological changes during short-term fasting.


Abstract

Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.

Effectiveness and safety of secukinumab in Chinese patients with moderate to severe plaque psoriasis in real‐world practice

Abstract

A number of randomized controlled trials and real-world studies have demonstrated the effectiveness and safety of secukinumab in the treatment of moderate to severe psoriasis, whereas data on a large cohort of Chinese patients in long-term real-world practice are limited. This was a single-centre, uncontrolled, single-arm, prospective, observational cohort study that included 254 psoriatic patients treated with secukinumab between September 2019 and December 2022. Demographic and clinical characteristics of patients, clinical response and adverse events were evaluated. The 75% improvement in Psoriasis Area and Severity Index score (PASI 75), PASI 90, and PASI 100 in the 300 mg secukinumab group at 12 weeks were 91.7%, 74.0% and 39.7% respectively, increasing to 94.5%, 74.5% and 47.6% at 52 weeks. High body mass index (BMI), previous exposure to biologic therapies and history of previous conventional systemic therapies were associated with lower rates of PASI response. During the study period, 68 patients reported 83 adverse events (AEs) and the most frequent AEs were eczematous lesions. Up to 14.5% patients withdrew treatment due to disease remission combined with inconvenient transportation during the COVID-19 pandemic at 52 weeks. The rate of psoriasis exacerbation after COVID-19 infection in patients treated with secukinumab was 24.3% (17/70). This real-world study confirmed the high effectiveness of secukinumab in Chinese patients with moderate to severe plaque psoriasis, with an acceptable safety profile.

Protein concentrations and activities of fatty acid desaturase and elongase enzymes in liver, brain, testicle, and kidney from mice: Substrate dependency

Protein concentrations and activities of fatty acid desaturase and elongase enzymes in liver, brain, testicle, and kidney from mice: Substrate dependency

The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein content and activity of the enzymes were significantly correlated. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.


Abstract

The synthesis rates of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in rodents and humans are not agreed upon and depend on substrate availability independently of the capacity for synthesis. Therefore, we aimed to assess the activities of the enzymes for n-3 and n-6 PUFA synthesis pathways in liver, brain, testicle, kidney, heart, and lung, in relation to their protein concentration levels. Eight-week-old Balb/c mice (n = 8) were fed a standard chow diet (6.2% fat, 18.6% protein, and 44.2% carbohydrates) until 14 weeks of age, anesthetized with isoflurane and tissue samples were collected (previously perfused) and stored at −80°C. The protein concentration of the enzymes (Δ-6D, Δ-5D, Elovl2, and Elovl5) were assessed by ELISA kits; their activities were assayed using specific PUFA precursors and measuring the respective PUFA products as fatty acid methyl esters by gas chromatographic analysis. The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein concentration and activity of the enzymes were significantly correlated. Furthermore, Δ-6D, Δ-5D, and Elovl2 have a higher affinity for n-3 PUFA precursors compared to n-6 PUFA. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.